ardupilot/ArduCopter/AP_Arming.cpp
Eric Katzfey 281ea91ee5 ArduCopter: Update clang pragma to check for the version of clang that introduces the warning
AP_Arming: Update clang pragma to check for the version of clang that introduces the warning
2024-11-12 12:41:49 +11:00

840 lines
27 KiB
C++

#include "Copter.h"
#pragma GCC diagnostic push
#if defined(__clang_major__) && __clang_major__ >= 14
#pragma GCC diagnostic ignored "-Wbitwise-instead-of-logical"
#endif
bool AP_Arming_Copter::pre_arm_checks(bool display_failure)
{
const bool passed = run_pre_arm_checks(display_failure);
set_pre_arm_check(passed);
return passed;
}
// perform pre-arm checks
// return true if the checks pass successfully
bool AP_Arming_Copter::run_pre_arm_checks(bool display_failure)
{
// exit immediately if already armed
if (copter.motors->armed()) {
return true;
}
// check if motor interlock and either Emergency Stop aux switches are used
// at the same time. This cannot be allowed.
bool passed = true;
if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) &&
(rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP) ||
rc().find_channel_for_option(RC_Channel::AUX_FUNC::ARM_EMERGENCY_STOP))){
check_failed(display_failure, "Interlock/E-Stop Conflict");
passed = false;
}
// check if motor interlock aux switch is in use
// if it is, switch needs to be in disabled position to arm
// otherwise exit immediately.
if (copter.ap.using_interlock && copter.ap.motor_interlock_switch) {
check_failed(display_failure, "Motor Interlock Enabled");
passed = false;
}
if (!disarm_switch_checks(display_failure)) {
passed = false;
}
// always check motors
char failure_msg[100] {};
if (!copter.motors->arming_checks(ARRAY_SIZE(failure_msg), failure_msg)) {
check_failed(display_failure, "Motors: %s", failure_msg);
passed = false;
}
// If not passed all checks return false
if (!passed) {
return false;
}
// if pre arm checks are disabled run only the mandatory checks
if (checks_to_perform == 0) {
return mandatory_checks(display_failure);
}
// bitwise & ensures all checks are run
return parameter_checks(display_failure)
& oa_checks(display_failure)
& gcs_failsafe_check(display_failure)
& winch_checks(display_failure)
& rc_throttle_failsafe_checks(display_failure)
& alt_checks(display_failure)
#if AP_AIRSPEED_ENABLED
& AP_Arming::airspeed_checks(display_failure)
#endif
& AP_Arming::pre_arm_checks(display_failure);
}
bool AP_Arming_Copter::rc_throttle_failsafe_checks(bool display_failure) const
{
if (!check_enabled(ARMING_CHECK_RC)) {
// this check has been disabled
return true;
}
// throttle failsafe. In this case the parameter also gates the
// no-pulses RC failure case - the radio-in value can be zero due
// to not having received any RC pulses at all. Note that if we
// have ever seen RC and then we *lose* RC then these checks are
// likely to pass if the user is relying on no-pulses to detect RC
// failure. However, arming is precluded in that case by being in
// RC failsafe.
if (copter.g.failsafe_throttle == FS_THR_DISABLED) {
return true;
}
#if FRAME_CONFIG == HELI_FRAME
const char *rc_item = "Collective";
#else
const char *rc_item = "Throttle";
#endif
if (!rc().has_had_rc_receiver() && !rc().has_had_rc_override()) {
check_failed(ARMING_CHECK_RC, display_failure, "RC not found");
return false;
}
// check throttle is not too low - must be above failsafe throttle
if (copter.channel_throttle->get_radio_in() < copter.g.failsafe_throttle_value) {
check_failed(ARMING_CHECK_RC, display_failure, "%s below failsafe", rc_item);
return false;
}
return true;
}
bool AP_Arming_Copter::barometer_checks(bool display_failure)
{
if (!AP_Arming::barometer_checks(display_failure)) {
return false;
}
bool ret = true;
// check Baro
if (check_enabled(ARMING_CHECK_BARO)) {
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = copter.inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref) {
if (fabsf(copter.inertial_nav.get_position_z_up_cm() - copter.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
check_failed(ARMING_CHECK_BARO, display_failure, "Altitude disparity");
ret = false;
}
}
}
return ret;
}
bool AP_Arming_Copter::ins_checks(bool display_failure)
{
bool ret = AP_Arming::ins_checks(display_failure);
if (check_enabled(ARMING_CHECK_INS)) {
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
check_failed(ARMING_CHECK_INS, display_failure, "EKF attitude is bad");
ret = false;
}
}
return ret;
}
bool AP_Arming_Copter::board_voltage_checks(bool display_failure)
{
if (!AP_Arming::board_voltage_checks(display_failure)) {
return false;
}
// check battery voltage
if (check_enabled(ARMING_CHECK_VOLTAGE)) {
if (copter.battery.has_failsafed()) {
check_failed(ARMING_CHECK_VOLTAGE, display_failure, "Battery failsafe");
return false;
}
}
return true;
}
// expected to return true if the terrain database is required to have
// all data loaded
bool AP_Arming_Copter::terrain_database_required() const
{
if (copter.wp_nav->get_terrain_source() == AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER) {
// primary terrain source is from rangefinder, allow arming without terrain database
return false;
}
if (copter.wp_nav->get_terrain_source() == AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE &&
copter.mode_rtl.get_alt_type() == ModeRTL::RTLAltType::TERRAIN) {
return true;
}
return AP_Arming::terrain_database_required();
}
bool AP_Arming_Copter::parameter_checks(bool display_failure)
{
// check various parameter values
if (check_enabled(ARMING_CHECK_PARAMETERS)) {
// failsafe parameter checks
if (copter.g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (copter.channel_throttle->get_radio_min() <= copter.g.failsafe_throttle_value+10 || copter.g.failsafe_throttle_value < 910) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check FS_THR_VALUE");
return false;
}
}
if (copter.g.failsafe_gcs == FS_GCS_ENABLED_CONTINUE_MISSION) {
// FS_GCS_ENABLE == 2 has been removed
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "FS_GCS_ENABLE=2 removed, see FS_OPTIONS");
}
// lean angle parameter check
if (copter.aparm.angle_max < 1000 || copter.aparm.angle_max > 8000) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ANGLE_MAX");
return false;
}
// acro balance parameter check
#if MODE_ACRO_ENABLED || MODE_SPORT_ENABLED
if ((copter.g.acro_balance_roll > copter.attitude_control->get_angle_roll_p().kP()) || (copter.g.acro_balance_pitch > copter.attitude_control->get_angle_pitch_p().kP())) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ACRO_BAL_ROLL/PITCH");
return false;
}
#endif
// pilot-speed-up parameter check
if (copter.g.pilot_speed_up <= 0) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check PILOT_SPEED_UP");
return false;
}
#if FRAME_CONFIG == HELI_FRAME
char fail_msg[100]{};
// check input manager parameters
if (!copter.input_manager.parameter_check(fail_msg, ARRAY_SIZE(fail_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "%s", fail_msg);
return false;
}
// Ensure an Aux Channel is configured for motor interlock
if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) == nullptr) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Motor Interlock not configured");
return false;
}
#else
switch (copter.g2.frame_class.get()) {
case AP_Motors::MOTOR_FRAME_HELI_QUAD:
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
case AP_Motors::MOTOR_FRAME_HELI:
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid MultiCopter FRAME_CLASS");
return false;
default:
break;
}
#endif // HELI_FRAME
// checks when using range finder for RTL
#if MODE_RTL_ENABLED
if (copter.mode_rtl.get_alt_type() == ModeRTL::RTLAltType::TERRAIN) {
// get terrain source from wpnav
const char *failure_template = "RTL_ALT_TYPE is above-terrain but %s";
switch (copter.wp_nav->get_terrain_source()) {
case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE:
check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "no terrain data");
return false;
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER:
#if AP_RANGEFINDER_ENABLED
if (!copter.rangefinder_state.enabled || !copter.rangefinder.has_orientation(ROTATION_PITCH_270)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "no rangefinder");
return false;
}
// check if RTL_ALT is higher than rangefinder's max range
if (copter.g.rtl_altitude > copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "RTL_ALT>RNGFND_MAX_CM");
return false;
}
#else
check_failed(ARMING_CHECK_PARAMETERS, display_failure, failure_template, "rangefinder not in firmware");
#endif
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE:
// these checks are done in AP_Arming
break;
}
}
#endif
// check adsb avoidance failsafe
#if HAL_ADSB_ENABLED
if (copter.failsafe.adsb) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "ADSB threat detected");
return false;
}
#endif
// ensure controllers are OK with us arming:
char failure_msg[100] = {};
if (!copter.pos_control->pre_arm_checks("PSC", failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg);
return false;
}
if (!copter.attitude_control->pre_arm_checks("ATC", failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg);
return false;
}
}
return true;
}
bool AP_Arming_Copter::oa_checks(bool display_failure)
{
#if AP_OAPATHPLANNER_ENABLED
char failure_msg[100] = {};
if (copter.g2.oa.pre_arm_check(failure_msg, ARRAY_SIZE(failure_msg))) {
return true;
}
// display failure
if (strlen(failure_msg) == 0) {
check_failed(display_failure, "%s", "Check Object Avoidance");
} else {
check_failed(display_failure, "%s", failure_msg);
}
return false;
#else
return true;
#endif
}
bool AP_Arming_Copter::rc_calibration_checks(bool display_failure)
{
const RC_Channel *channels[] = {
copter.channel_roll,
copter.channel_pitch,
copter.channel_throttle,
copter.channel_yaw
};
// bitwise & ensures all checks are run
copter.ap.pre_arm_rc_check = rc_checks_copter_sub(display_failure, channels)
& AP_Arming::rc_calibration_checks(display_failure);
return copter.ap.pre_arm_rc_check;
}
// performs pre_arm gps related checks and returns true if passed
bool AP_Arming_Copter::gps_checks(bool display_failure)
{
// check if fence requires GPS
bool fence_requires_gps = false;
#if AP_FENCE_ENABLED
// if circular or polygon fence is enabled we need GPS
fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0;
#endif
// check if flight mode requires GPS
bool mode_requires_gps = copter.flightmode->requires_GPS() || fence_requires_gps || (copter.simple_mode == Copter::SimpleMode::SUPERSIMPLE);
// call parent gps checks
if (mode_requires_gps) {
if (!AP_Arming::gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
}
// run mandatory gps checks first
if (!mandatory_gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// return true if GPS is not required
if (!mode_requires_gps) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// return true immediately if gps check is disabled
if (!check_enabled(ARMING_CHECK_GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if ((copter.gps.num_sensors() > 0) && (copter.gps.get_hdop() > copter.g.gps_hdop_good)) {
check_failed(ARMING_CHECK_GPS, display_failure, "High GPS HDOP");
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// if we got here all must be ok
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// check ekf attitude is acceptable
bool AP_Arming_Copter::pre_arm_ekf_attitude_check()
{
// get ekf filter status
nav_filter_status filt_status = copter.inertial_nav.get_filter_status();
return filt_status.flags.attitude;
}
#if HAL_PROXIMITY_ENABLED
// check nothing is too close to vehicle
bool AP_Arming_Copter::proximity_checks(bool display_failure) const
{
if (!AP_Arming::proximity_checks(display_failure)) {
return false;
}
if (!check_enabled(ARMING_CHECK_PARAMETERS)) {
// check is disabled
return true;
}
// get closest object if we might use it for avoidance
#if AP_AVOIDANCE_ENABLED
float angle_deg, distance;
if (copter.avoid.proximity_avoidance_enabled() && copter.g2.proximity.get_closest_object(angle_deg, distance)) {
// display error if something is within 60cm
const float tolerance = 0.6f;
if (distance <= tolerance) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Proximity %d deg, %4.2fm (want > %0.1fm)", (int)angle_deg, (double)distance, (double)tolerance);
return false;
}
}
#endif
return true;
}
#endif // HAL_PROXIMITY_ENABLED
// performs mandatory gps checks. returns true if passed
bool AP_Arming_Copter::mandatory_gps_checks(bool display_failure)
{
// check if flight mode requires GPS
bool mode_requires_gps = copter.flightmode->requires_GPS();
// always check if inertial nav has started and is ready
const auto &ahrs = AP::ahrs();
char failure_msg[100] = {};
if (!ahrs.pre_arm_check(mode_requires_gps, failure_msg, sizeof(failure_msg))) {
check_failed(display_failure, "AHRS: %s", failure_msg);
return false;
}
// check if fence requires GPS
bool fence_requires_gps = false;
#if AP_FENCE_ENABLED
// if circular or polygon fence is enabled we need GPS
fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0;
#endif
if (mode_requires_gps || copter.option_is_enabled(Copter::FlightOption::REQUIRE_POSITION_FOR_ARMING)) {
if (!copter.position_ok()) {
// vehicle level position estimate checks
check_failed(display_failure, "Need Position Estimate");
return false;
}
} else if (fence_requires_gps) {
if (!copter.position_ok()) {
// clarify to user why they need GPS in non-GPS flight mode
check_failed(display_failure, "Fence enabled, need position estimate");
return false;
}
} else {
// return true if GPS is not required
return true;
}
// check for GPS glitch (as reported by EKF)
nav_filter_status filt_status;
if (ahrs.get_filter_status(filt_status)) {
if (filt_status.flags.gps_glitching) {
check_failed(display_failure, "GPS glitching");
return false;
}
}
// check EKF's compass, position, height and velocity variances are below failsafe threshold
if (copter.g.fs_ekf_thresh > 0.0f) {
float vel_variance, pos_variance, hgt_variance, tas_variance;
Vector3f mag_variance;
ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance);
if (mag_variance.length() >= copter.g.fs_ekf_thresh) {
check_failed(display_failure, "EKF compass variance");
return false;
}
if (pos_variance >= copter.g.fs_ekf_thresh) {
check_failed(display_failure, "EKF position variance");
return false;
}
if (vel_variance >= copter.g.fs_ekf_thresh) {
check_failed(display_failure, "EKF velocity variance");
return false;
}
if (hgt_variance >= copter.g.fs_ekf_thresh) {
check_failed(display_failure, "EKF height variance");
return false;
}
}
// if we got here all must be ok
return true;
}
// Check GCS failsafe
bool AP_Arming_Copter::gcs_failsafe_check(bool display_failure)
{
if (copter.failsafe.gcs) {
check_failed(display_failure, "GCS failsafe on");
return false;
}
return true;
}
// check winch
bool AP_Arming_Copter::winch_checks(bool display_failure) const
{
#if AP_WINCH_ENABLED
// pass if parameter or all arming checks disabled
if (!check_enabled(ARMING_CHECK_PARAMETERS)) {
return true;
}
const AP_Winch *winch = AP::winch();
if (winch == nullptr) {
return true;
}
char failure_msg[100] = {};
if (!winch->pre_arm_check(failure_msg, sizeof(failure_msg))) {
check_failed(display_failure, "%s", failure_msg);
return false;
}
#endif
return true;
}
// performs altitude checks. returns true if passed
bool AP_Arming_Copter::alt_checks(bool display_failure)
{
// always EKF altitude estimate
if (!copter.flightmode->has_manual_throttle() && !copter.ekf_alt_ok()) {
check_failed(display_failure, "Need Alt Estimate");
return false;
}
return true;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
// has side-effect that logging is started
bool AP_Arming_Copter::arm_checks(AP_Arming::Method method)
{
const auto &ahrs = AP::ahrs();
// always check if inertial nav has started and is ready
if (!ahrs.healthy()) {
check_failed(true, "AHRS not healthy");
return false;
}
#ifndef ALLOW_ARM_NO_COMPASS
// if non-compass is source of heading we can skip compass health check
if (!ahrs.using_noncompass_for_yaw()) {
const Compass &_compass = AP::compass();
// check compass health
if (!_compass.healthy()) {
check_failed(true, "Compass not healthy");
return false;
}
}
#endif
// always check if the current mode allows arming
if (!copter.flightmode->allows_arming(method)) {
check_failed(true, "%s mode not armable", copter.flightmode->name());
return false;
}
// succeed if arming checks are disabled
if (checks_to_perform == 0) {
return true;
}
// check lean angle
if (check_enabled(ARMING_CHECK_INS)) {
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > copter.aparm.angle_max) {
check_failed(ARMING_CHECK_INS, true, "Leaning");
return false;
}
}
// check adsb
#if HAL_ADSB_ENABLED
if (check_enabled(ARMING_CHECK_PARAMETERS)) {
if (copter.failsafe.adsb) {
check_failed(ARMING_CHECK_PARAMETERS, true, "ADSB threat detected");
return false;
}
}
#endif
// check throttle
if (check_enabled(ARMING_CHECK_RC)) {
#if FRAME_CONFIG == HELI_FRAME
const char *rc_item = "Collective";
#else
const char *rc_item = "Throttle";
#endif
// check throttle is not too high - skips checks if arming from GCS/scripting in Guided,Guided_NoGPS or Auto
if (!((AP_Arming::method_is_GCS(method) || method == AP_Arming::Method::SCRIPTING) && copter.flightmode->allows_GCS_or_SCR_arming_with_throttle_high())) {
// above top of deadband is too always high
if (copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in()) > 0.0f) {
check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item);
return false;
}
// in manual modes throttle must be at zero
#if FRAME_CONFIG != HELI_FRAME
if ((copter.flightmode->has_manual_throttle() || copter.flightmode->mode_number() == Mode::Number::DRIFT) && copter.channel_throttle->get_control_in() > 0) {
check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item);
return false;
}
#endif
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
check_failed(true, "Safety Switch");
return false;
}
// superclass method should always be the last thing called; it
// has side-effects which would need to be cleaned up if one of
// our arm checks failed
return AP_Arming::arm_checks(method);
}
// mandatory checks that will be run if ARMING_CHECK is zero or arming forced
bool AP_Arming_Copter::mandatory_checks(bool display_failure)
{
// call mandatory gps checks and update notify status because regular gps checks will not run
bool result = mandatory_gps_checks(display_failure);
AP_Notify::flags.pre_arm_gps_check = result;
// call mandatory alt check
if (!alt_checks(display_failure)) {
result = false;
}
return result & AP_Arming::mandatory_checks(display_failure);
}
void AP_Arming_Copter::set_pre_arm_check(bool b)
{
copter.ap.pre_arm_check = b;
AP_Notify::flags.pre_arm_check = b;
}
bool AP_Arming_Copter::arm(const AP_Arming::Method method, const bool do_arming_checks)
{
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
// return true if already armed
if (copter.motors->armed()) {
in_arm_motors = false;
return true;
}
if (!AP_Arming::arm(method, do_arming_checks)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
#if HAL_LOGGING_ENABLED
// let logger know that we're armed (it may open logs e.g.)
AP::logger().set_vehicle_armed(true);
#endif
// disable cpu failsafe because initialising everything takes a while
copter.failsafe_disable();
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call notify update a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
AP::notify().update();
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
send_arm_disarm_statustext("Arming motors");
#endif
// Remember Orientation
// --------------------
copter.init_simple_bearing();
auto &ahrs = AP::ahrs();
copter.initial_armed_bearing = ahrs.yaw_sensor;
if (!ahrs.home_is_set()) {
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
ahrs.resetHeightDatum();
LOGGER_WRITE_EVENT(LogEvent::EKF_ALT_RESET);
// we have reset height, so arming height is zero
copter.arming_altitude_m = 0;
} else if (!ahrs.home_is_locked()) {
// Reset home position if it has already been set before (but not locked)
if (!copter.set_home_to_current_location(false)) {
// ignore failure
}
// remember the height when we armed
copter.arming_altitude_m = copter.inertial_nav.get_position_z_up_cm() * 0.01;
}
copter.update_super_simple_bearing(false);
// Reset SmartRTL return location. If activated, SmartRTL will ultimately try to land at this point
#if MODE_SMARTRTL_ENABLED
copter.g2.smart_rtl.set_home(copter.position_ok());
#endif
hal.util->set_soft_armed(true);
#if HAL_SPRAYER_ENABLED
// turn off sprayer's test if on
copter.sprayer.test_pump(false);
#endif
// output lowest possible value to motors
copter.motors->output_min();
// finally actually arm the motors
copter.motors->armed(true);
#if HAL_LOGGING_ENABLED
// log flight mode in case it was changed while vehicle was disarmed
AP::logger().Write_Mode((uint8_t)copter.flightmode->mode_number(), copter.control_mode_reason);
#endif
// re-enable failsafe
copter.failsafe_enable();
// perf monitor ignores delay due to arming
AP::scheduler().perf_info.ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// Log time stamp of arming event
copter.arm_time_ms = millis();
// Start the arming delay
copter.ap.in_arming_delay = true;
// assumed armed without a arming, switch. Overridden in switches.cpp
copter.ap.armed_with_airmode_switch = false;
// return success
return true;
}
// arming.disarm - disarm motors
bool AP_Arming_Copter::disarm(const AP_Arming::Method method, bool do_disarm_checks)
{
// return immediately if we are already disarmed
if (!copter.motors->armed()) {
return true;
}
// do not allow disarm via mavlink if we think we are flying:
if (do_disarm_checks &&
AP_Arming::method_is_GCS(method) &&
!copter.ap.land_complete) {
return false;
}
if (!AP_Arming::disarm(method, do_disarm_checks)) {
return false;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
send_arm_disarm_statustext("Disarming motors");
#endif
auto &ahrs = AP::ahrs();
// save compass offsets learned by the EKF if enabled
Compass &compass = AP::compass();
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) {
for(uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
// we are not in the air
copter.set_land_complete(true);
copter.set_land_complete_maybe(true);
// send disarm command to motors
copter.motors->armed(false);
#if MODE_AUTO_ENABLED
// reset the mission
copter.mode_auto.mission.reset();
#endif
#if HAL_LOGGING_ENABLED
AP::logger().set_vehicle_armed(false);
#endif
hal.util->set_soft_armed(false);
copter.ap.in_arming_delay = false;
#if AUTOTUNE_ENABLED
// Possibly save auto tuned parameters
copter.mode_autotune.autotune.disarmed(copter.flightmode == &copter.mode_autotune);
#endif
return true;
}
#pragma GCC diagnostic pop