ardupilot/libraries/AP_Logger/LogFile.cpp

1741 lines
64 KiB
C++

#include <stdlib.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Param/AP_Param.h>
#include <AP_Motors/AP_Motors.h>
#include <AC_AttitudeControl/AC_AttitudeControl.h>
#include <AC_AttitudeControl/AC_PosControl.h>
#include <AP_RangeFinder/RangeFinder_Backend.h>
#include "AP_Logger.h"
#include "AP_Logger_File.h"
#include "AP_Logger_MAVLink.h"
#include "LoggerMessageWriter.h"
extern const AP_HAL::HAL& hal;
/*
write a structure format to the log - should be in frontend
*/
void AP_Logger_Backend::Fill_Format(const struct LogStructure *s, struct log_Format &pkt)
{
memset(&pkt, 0, sizeof(pkt));
pkt.head1 = HEAD_BYTE1;
pkt.head2 = HEAD_BYTE2;
pkt.msgid = LOG_FORMAT_MSG;
pkt.type = s->msg_type;
pkt.length = s->msg_len;
strncpy(pkt.name, s->name, sizeof(pkt.name));
strncpy(pkt.format, s->format, sizeof(pkt.format));
strncpy(pkt.labels, s->labels, sizeof(pkt.labels));
}
/*
Pack a LogStructure packet into a structure suitable to go to the logfile:
*/
void AP_Logger_Backend::Fill_Format_Units(const struct LogStructure *s, struct log_Format_Units &pkt)
{
memset(&pkt, 0, sizeof(pkt));
pkt.head1 = HEAD_BYTE1;
pkt.head2 = HEAD_BYTE2;
pkt.msgid = LOG_FORMAT_UNITS_MSG;
pkt.time_us = AP_HAL::micros64();
pkt.format_type = s->msg_type;
strncpy(pkt.units, s->units, sizeof(pkt.units));
strncpy(pkt.multipliers, s->multipliers, sizeof(pkt.multipliers));
}
/*
write a structure format to the log
*/
bool AP_Logger_Backend::Write_Format(const struct LogStructure *s)
{
struct log_Format pkt;
Fill_Format(s, pkt);
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a unit definition
*/
bool AP_Logger_Backend::Write_Unit(const struct UnitStructure *s)
{
struct log_Unit pkt = {
LOG_PACKET_HEADER_INIT(LOG_UNIT_MSG),
time_us : AP_HAL::micros64(),
type : s->ID,
unit : { }
};
strncpy(pkt.unit, s->unit, sizeof(pkt.unit));
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a unit-multiplier definition
*/
bool AP_Logger_Backend::Write_Multiplier(const struct MultiplierStructure *s)
{
struct log_Format_Multiplier pkt = {
LOG_PACKET_HEADER_INIT(LOG_MULT_MSG),
time_us : AP_HAL::micros64(),
type : s->ID,
multiplier : s->multiplier,
};
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write the units for a format to the log
*/
bool AP_Logger_Backend::Write_Format_Units(const struct LogStructure *s)
{
struct log_Format_Units pkt;
Fill_Format_Units(s, pkt);
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a parameter to the log
*/
bool AP_Logger_Backend::Write_Parameter(const char *name, float value)
{
struct log_Parameter pkt = {
LOG_PACKET_HEADER_INIT(LOG_PARAMETER_MSG),
time_us : AP_HAL::micros64(),
name : {},
value : value
};
strncpy(pkt.name, name, sizeof(pkt.name));
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a parameter to the log
*/
bool AP_Logger_Backend::Write_Parameter(const AP_Param *ap,
const AP_Param::ParamToken &token,
enum ap_var_type type)
{
char name[16];
ap->copy_name_token(token, &name[0], sizeof(name), true);
return Write_Parameter(name, ap->cast_to_float(type));
}
// Write an GPS packet
void AP_Logger::Write_GPS(uint8_t i, uint64_t time_us)
{
const AP_GPS &gps = AP::gps();
if (time_us == 0) {
time_us = AP_HAL::micros64();
}
const struct Location &loc = gps.location(i);
struct log_GPS pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPS_MSG+i)),
time_us : time_us,
status : (uint8_t)gps.status(i),
gps_week_ms : gps.time_week_ms(i),
gps_week : gps.time_week(i),
num_sats : gps.num_sats(i),
hdop : gps.get_hdop(i),
latitude : loc.lat,
longitude : loc.lng,
altitude : loc.alt,
ground_speed : gps.ground_speed(i),
ground_course : gps.ground_course(i),
vel_z : gps.velocity(i).z,
used : (uint8_t)(gps.primary_sensor() == i)
};
WriteBlock(&pkt, sizeof(pkt));
/* write auxiliary accuracy information as well */
float hacc = 0, vacc = 0, sacc = 0;
gps.horizontal_accuracy(i, hacc);
gps.vertical_accuracy(i, vacc);
gps.speed_accuracy(i, sacc);
struct log_GPA pkt2 = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPA_MSG+i)),
time_us : time_us,
vdop : gps.get_vdop(i),
hacc : (uint16_t)MIN((hacc*100), UINT16_MAX),
vacc : (uint16_t)MIN((vacc*100), UINT16_MAX),
sacc : (uint16_t)MIN((sacc*100), UINT16_MAX),
have_vv : (uint8_t)gps.have_vertical_velocity(i),
sample_ms : gps.last_message_time_ms(i),
delta_ms : gps.last_message_delta_time_ms(i)
};
WriteBlock(&pkt2, sizeof(pkt2));
}
// Write an RFND (rangefinder) packet
void AP_Logger::Write_RFND(const RangeFinder &rangefinder)
{
AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0);
AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1);
struct log_RFND pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_RFND_MSG)),
time_us : AP_HAL::micros64(),
dist1 : s0 ? s0->distance_cm() : (uint16_t)0,
status1 : s0 ? (uint8_t)s0->status() : (uint8_t)0,
orient1 : s0 ? s0->orientation() : ROTATION_NONE,
dist2 : s1 ? s1->distance_cm() : (uint16_t)0,
status2 : s1 ? (uint8_t)s1->status() : (uint8_t)0,
orient2 : s1 ? s1->orientation() : ROTATION_NONE,
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write an RCIN packet
void AP_Logger::Write_RCIN(void)
{
uint16_t values[14] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
struct log_RCIN pkt = {
LOG_PACKET_HEADER_INIT(LOG_RCIN_MSG),
time_us : AP_HAL::micros64(),
chan1 : values[0],
chan2 : values[1],
chan3 : values[2],
chan4 : values[3],
chan5 : values[4],
chan6 : values[5],
chan7 : values[6],
chan8 : values[7],
chan9 : values[8],
chan10 : values[9],
chan11 : values[10],
chan12 : values[11],
chan13 : values[12],
chan14 : values[13]
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write an SERVO packet
void AP_Logger::Write_RCOUT(void)
{
struct log_RCOUT pkt = {
LOG_PACKET_HEADER_INIT(LOG_RCOUT_MSG),
time_us : AP_HAL::micros64(),
chan1 : hal.rcout->read(0),
chan2 : hal.rcout->read(1),
chan3 : hal.rcout->read(2),
chan4 : hal.rcout->read(3),
chan5 : hal.rcout->read(4),
chan6 : hal.rcout->read(5),
chan7 : hal.rcout->read(6),
chan8 : hal.rcout->read(7),
chan9 : hal.rcout->read(8),
chan10 : hal.rcout->read(9),
chan11 : hal.rcout->read(10),
chan12 : hal.rcout->read(11),
chan13 : hal.rcout->read(12),
chan14 : hal.rcout->read(13)
};
WriteBlock(&pkt, sizeof(pkt));
Write_ESC();
}
// Write an RSSI packet
void AP_Logger::Write_RSSI(AP_RSSI &rssi)
{
struct log_RSSI pkt = {
LOG_PACKET_HEADER_INIT(LOG_RSSI_MSG),
time_us : AP_HAL::micros64(),
RXRSSI : rssi.read_receiver_rssi()
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_Baro_instance(uint64_t time_us, uint8_t baro_instance, enum LogMessages type)
{
AP_Baro &baro = AP::baro();
float climbrate = baro.get_climb_rate();
float drift_offset = baro.get_baro_drift_offset();
float ground_temp = baro.get_ground_temperature();
struct log_BARO pkt = {
LOG_PACKET_HEADER_INIT(type),
time_us : time_us,
altitude : baro.get_altitude(baro_instance),
pressure : baro.get_pressure(baro_instance),
temperature : (int16_t)(baro.get_temperature(baro_instance) * 100 + 0.5f),
climbrate : climbrate,
sample_time_ms: baro.get_last_update(baro_instance),
drift_offset : drift_offset,
ground_temp : ground_temp,
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a BARO packet
void AP_Logger::Write_Baro(uint64_t time_us)
{
if (time_us == 0) {
time_us = AP_HAL::micros64();
}
const AP_Baro &baro = AP::baro();
Write_Baro_instance(time_us, 0, LOG_BARO_MSG);
if (baro.num_instances() > 1 && baro.healthy(1)) {
Write_Baro_instance(time_us, 1, LOG_BAR2_MSG);
}
if (baro.num_instances() > 2 && baro.healthy(2)) {
Write_Baro_instance(time_us, 2, LOG_BAR3_MSG);
}
}
void AP_Logger::Write_IMU_instance(const uint64_t time_us, const uint8_t imu_instance, const enum LogMessages type)
{
const AP_InertialSensor &ins = AP::ins();
const Vector3f &gyro = ins.get_gyro(imu_instance);
const Vector3f &accel = ins.get_accel(imu_instance);
struct log_IMU pkt = {
LOG_PACKET_HEADER_INIT(type),
time_us : time_us,
gyro_x : gyro.x,
gyro_y : gyro.y,
gyro_z : gyro.z,
accel_x : accel.x,
accel_y : accel.y,
accel_z : accel.z,
gyro_error : ins.get_gyro_error_count(imu_instance),
accel_error : ins.get_accel_error_count(imu_instance),
temperature : ins.get_temperature(imu_instance),
gyro_health : (uint8_t)ins.get_gyro_health(imu_instance),
accel_health : (uint8_t)ins.get_accel_health(imu_instance),
gyro_rate : ins.get_gyro_rate_hz(imu_instance),
accel_rate : ins.get_accel_rate_hz(imu_instance),
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write an raw accel/gyro data packet
void AP_Logger::Write_IMU()
{
uint64_t time_us = AP_HAL::micros64();
const AP_InertialSensor &ins = AP::ins();
Write_IMU_instance(time_us, 0, LOG_IMU_MSG);
if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) {
return;
}
Write_IMU_instance(time_us, 1, LOG_IMU2_MSG);
if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) {
return;
}
Write_IMU_instance(time_us, 2, LOG_IMU3_MSG);
}
// Write an accel/gyro delta time data packet
void AP_Logger::Write_IMUDT_instance(const uint64_t time_us, const uint8_t imu_instance, const enum LogMessages type)
{
const AP_InertialSensor &ins = AP::ins();
float delta_t = ins.get_delta_time();
float delta_vel_t = ins.get_delta_velocity_dt(imu_instance);
float delta_ang_t = ins.get_delta_angle_dt(imu_instance);
Vector3f delta_angle, delta_velocity;
ins.get_delta_angle(imu_instance, delta_angle);
ins.get_delta_velocity(imu_instance, delta_velocity);
struct log_IMUDT pkt = {
LOG_PACKET_HEADER_INIT(type),
time_us : time_us,
delta_time : delta_t,
delta_vel_dt : delta_vel_t,
delta_ang_dt : delta_ang_t,
delta_ang_x : delta_angle.x,
delta_ang_y : delta_angle.y,
delta_ang_z : delta_angle.z,
delta_vel_x : delta_velocity.x,
delta_vel_y : delta_velocity.y,
delta_vel_z : delta_velocity.z
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_IMUDT(uint64_t time_us, uint8_t imu_mask)
{
const AP_InertialSensor &ins = AP::ins();
if (imu_mask & 1) {
Write_IMUDT_instance(time_us, 0, LOG_IMUDT_MSG);
}
if ((ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) || !ins.use_gyro(1)) {
return;
}
if (imu_mask & 2) {
Write_IMUDT_instance(time_us, 1, LOG_IMUDT2_MSG);
}
if ((ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) || !ins.use_gyro(2)) {
return;
}
if (imu_mask & 4) {
Write_IMUDT_instance(time_us, 2, LOG_IMUDT3_MSG);
}
}
void AP_Logger::Write_Vibration()
{
uint64_t time_us = AP_HAL::micros64();
const AP_InertialSensor &ins = AP::ins();
const Vector3f vibration = ins.get_vibration_levels();
struct log_Vibe pkt = {
LOG_PACKET_HEADER_INIT(LOG_VIBE_MSG),
time_us : time_us,
vibe_x : vibration.x,
vibe_y : vibration.y,
vibe_z : vibration.z,
clipping_0 : ins.get_accel_clip_count(0),
clipping_1 : ins.get_accel_clip_count(1),
clipping_2 : ins.get_accel_clip_count(2)
};
WriteBlock(&pkt, sizeof(pkt));
}
bool AP_Logger_Backend::Write_Mission_Cmd(const AP_Mission &mission,
const AP_Mission::Mission_Command &cmd)
{
mavlink_mission_item_int_t mav_cmd = {};
AP_Mission::mission_cmd_to_mavlink_int(cmd,mav_cmd);
struct log_Cmd pkt = {
LOG_PACKET_HEADER_INIT(LOG_CMD_MSG),
time_us : AP_HAL::micros64(),
command_total : mission.num_commands(),
sequence : mav_cmd.seq,
command : mav_cmd.command,
param1 : mav_cmd.param1,
param2 : mav_cmd.param2,
param3 : mav_cmd.param3,
param4 : mav_cmd.param4,
latitude : mav_cmd.x,
longitude : mav_cmd.y,
altitude : mav_cmd.z,
frame : mav_cmd.frame
};
return WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger_Backend::Write_EntireMission(const AP_Mission &mission)
{
LoggerMessageWriter_WriteEntireMission writer;
writer.set_dataflash_backend(this);
writer.process();
}
// Write a text message to the log
bool AP_Logger_Backend::Write_Message(const char *message)
{
struct log_Message pkt = {
LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG),
time_us : AP_HAL::micros64(),
msg : {}
};
strncpy(pkt.msg, message, sizeof(pkt.msg));
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_Power(void)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
uint8_t safety_and_armed = uint8_t(hal.util->safety_switch_state());
if (hal.util->get_soft_armed()) {
// encode armed state in bit 3
safety_and_armed |= 1U<<2;
}
struct log_POWR pkt = {
LOG_PACKET_HEADER_INIT(LOG_POWR_MSG),
time_us : AP_HAL::micros64(),
Vcc : hal.analogin->board_voltage(),
Vservo : hal.analogin->servorail_voltage(),
flags : hal.analogin->power_status_flags(),
safety_and_arm : safety_and_armed
};
WriteBlock(&pkt, sizeof(pkt));
#endif
}
// Write an AHRS2 packet
void AP_Logger::Write_AHRS2(AP_AHRS &ahrs)
{
Vector3f euler;
struct Location loc;
Quaternion quat;
if (!ahrs.get_secondary_attitude(euler) || !ahrs.get_secondary_position(loc)) {
return;
}
ahrs.get_secondary_quaternion(quat);
struct log_AHRS pkt = {
LOG_PACKET_HEADER_INIT(LOG_AHR2_MSG),
time_us : AP_HAL::micros64(),
roll : (int16_t)(degrees(euler.x)*100),
pitch : (int16_t)(degrees(euler.y)*100),
yaw : (uint16_t)(wrap_360_cd(degrees(euler.z)*100)),
alt : loc.alt*1.0e-2f,
lat : loc.lat,
lng : loc.lng,
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4,
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a POS packet
void AP_Logger::Write_POS(AP_AHRS &ahrs)
{
Location loc;
if (!ahrs.get_position(loc)) {
return;
}
float home, origin;
ahrs.get_relative_position_D_home(home);
struct log_POS pkt = {
LOG_PACKET_HEADER_INIT(LOG_POS_MSG),
time_us : AP_HAL::micros64(),
lat : loc.lat,
lng : loc.lng,
alt : loc.alt*1.0e-2f,
rel_home_alt : -home,
rel_origin_alt : ahrs.get_relative_position_D_origin(origin) ? -origin : quiet_nanf(),
};
WriteBlock(&pkt, sizeof(pkt));
}
#if AP_AHRS_NAVEKF_AVAILABLE
void AP_Logger::Write_EKF(AP_AHRS_NavEKF &ahrs)
{
// only log EKF2 if enabled
if (ahrs.get_NavEKF2().activeCores() > 0) {
Write_EKF2(ahrs);
}
// only log EKF3 if enabled
if (ahrs.get_NavEKF3().activeCores() > 0) {
Write_EKF3(ahrs);
}
}
/*
write an EKF timing message
*/
void AP_Logger::Write_EKF_Timing(const char *name, uint64_t time_us, const struct ekf_timing &timing)
{
Write(name,
"TimeUS,Cnt,IMUMin,IMUMax,EKFMin,EKFMax,AngMin,AngMax,VMin,VMax",
"QIffffffff",
time_us,
timing.count,
(double)timing.dtIMUavg_min,
(double)timing.dtIMUavg_max,
(double)timing.dtEKFavg_min,
(double)timing.dtEKFavg_max,
(double)timing.delAngDT_min,
(double)timing.delAngDT_max,
(double)timing.delVelDT_min,
(double)timing.delVelDT_max);
}
void AP_Logger::Write_EKF2(AP_AHRS_NavEKF &ahrs)
{
uint64_t time_us = AP_HAL::micros64();
// Write first EKF packet
Vector3f euler;
Vector2f posNE;
float posD;
Vector3f velNED;
Vector3f gyroBias;
float posDownDeriv;
Location originLLH;
ahrs.get_NavEKF2().getEulerAngles(0,euler);
ahrs.get_NavEKF2().getVelNED(0,velNED);
ahrs.get_NavEKF2().getPosNE(0,posNE);
ahrs.get_NavEKF2().getPosD(0,posD);
ahrs.get_NavEKF2().getGyroBias(0,gyroBias);
posDownDeriv = ahrs.get_NavEKF2().getPosDownDerivative(0);
if (!ahrs.get_NavEKF2().getOriginLLH(0,originLLH)) {
originLLH.alt = 0;
}
struct log_EKF1 pkt = {
LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG),
time_us : time_us,
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
WriteBlock(&pkt, sizeof(pkt));
// Write second EKF packet
float azbias = 0;
Vector3f wind;
Vector3f magNED;
Vector3f magXYZ;
Vector3f gyroScaleFactor;
uint8_t magIndex = ahrs.get_NavEKF2().getActiveMag(0);
ahrs.get_NavEKF2().getAccelZBias(0,azbias);
ahrs.get_NavEKF2().getWind(0,wind);
ahrs.get_NavEKF2().getMagNED(0,magNED);
ahrs.get_NavEKF2().getMagXYZ(0,magXYZ);
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(0,gyroScaleFactor);
struct log_NKF2 pkt2 = {
LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG),
time_us : time_us,
AZbias : (int8_t)(100*azbias),
scaleX : (int16_t)(100*gyroScaleFactor.x),
scaleY : (int16_t)(100*gyroScaleFactor.y),
scaleZ : (int16_t)(100*gyroScaleFactor.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
index : (uint8_t)(magIndex)
};
WriteBlock(&pkt2, sizeof(pkt2));
// Write third EKF packet
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov = 0;
float yawInnov = 0;
ahrs.get_NavEKF2().getInnovations(0,velInnov, posInnov, magInnov, tasInnov, yawInnov);
struct log_NKF3 pkt3 = {
LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG),
time_us : time_us,
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov)
};
WriteBlock(&pkt3, sizeof(pkt3));
// Write fourth EKF packet
float velVar = 0;
float posVar = 0;
float hgtVar = 0;
Vector3f magVar;
float tasVar = 0;
Vector2f offset;
uint16_t faultStatus=0;
uint8_t timeoutStatus=0;
nav_filter_status solutionStatus {};
nav_gps_status gpsStatus {};
ahrs.get_NavEKF2().getVariances(0,velVar, posVar, hgtVar, magVar, tasVar, offset);
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
ahrs.get_NavEKF2().getFilterFaults(0,faultStatus);
ahrs.get_NavEKF2().getFilterTimeouts(0,timeoutStatus);
ahrs.get_NavEKF2().getFilterStatus(0,solutionStatus);
ahrs.get_NavEKF2().getFilterGpsStatus(0,gpsStatus);
float tiltError;
ahrs.get_NavEKF2().getTiltError(0,tiltError);
int8_t primaryIndex = ahrs.get_NavEKF2().getPrimaryCoreIndex();
struct log_NKF4 pkt4 = {
LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG),
time_us : time_us,
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : (float)tiltError,
offsetNorth : (int8_t)(offset.x),
offsetEast : (int8_t)(offset.y),
faults : (uint16_t)(faultStatus),
timeouts : (uint8_t)(timeoutStatus),
solution : (uint16_t)(solutionStatus.value),
gps : (uint16_t)(gpsStatus.value),
primary : (int8_t)primaryIndex
};
WriteBlock(&pkt4, sizeof(pkt4));
// Write fifth EKF packet - take data from the primary instance
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator
float HAGL=0; // height above ground level
float rngInnov=0; // range finder innovations
float range=0; // measured range
float gndOffsetErr=0; // filter ground offset state error
Vector3f predictorErrors; // output predictor angle, velocity and position tracking error
ahrs.get_NavEKF2().getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr);
ahrs.get_NavEKF2().getOutputTrackingError(-1,predictorErrors);
struct log_NKF5 pkt5 = {
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG),
time_us : time_us,
normInnov : (uint8_t)(MIN(100*normInnov,255)),
FIX : (int16_t)(1000*flowInnovX),
FIY : (int16_t)(1000*flowInnovY),
AFI : (int16_t)(1000*auxFlowInnov),
HAGL : (int16_t)(100*HAGL),
offset : (int16_t)(100*gndOffset),
RI : (int16_t)(100*rngInnov),
meaRng : (uint16_t)(100*range),
errHAGL : (uint16_t)(100*gndOffsetErr),
angErr : (float)predictorErrors.x,
velErr : (float)predictorErrors.y,
posErr : (float)predictorErrors.z
};
WriteBlock(&pkt5, sizeof(pkt5));
// log quaternion
Quaternion quat;
ahrs.get_NavEKF2().getQuaternion(0, quat);
struct log_Quaternion pktq1 = {
LOG_PACKET_HEADER_INIT(LOG_NKQ1_MSG),
time_us : time_us,
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
WriteBlock(&pktq1, sizeof(pktq1));
// log innovations for the second IMU if enabled
if (ahrs.get_NavEKF2().activeCores() >= 2) {
// Write 6th EKF packet
ahrs.get_NavEKF2().getEulerAngles(1,euler);
ahrs.get_NavEKF2().getVelNED(1,velNED);
ahrs.get_NavEKF2().getPosNE(1,posNE);
ahrs.get_NavEKF2().getPosD(1,posD);
ahrs.get_NavEKF2().getGyroBias(1,gyroBias);
posDownDeriv = ahrs.get_NavEKF2().getPosDownDerivative(1);
if (!ahrs.get_NavEKF2().getOriginLLH(1,originLLH)) {
originLLH.alt = 0;
}
struct log_EKF1 pkt6 = {
LOG_PACKET_HEADER_INIT(LOG_NKF6_MSG),
time_us : time_us,
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
WriteBlock(&pkt6, sizeof(pkt6));
// Write 7th EKF packet
ahrs.get_NavEKF2().getAccelZBias(1,azbias);
ahrs.get_NavEKF2().getWind(1,wind);
ahrs.get_NavEKF2().getMagNED(1,magNED);
ahrs.get_NavEKF2().getMagXYZ(1,magXYZ);
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(1,gyroScaleFactor);
magIndex = ahrs.get_NavEKF2().getActiveMag(1);
struct log_NKF2 pkt7 = {
LOG_PACKET_HEADER_INIT(LOG_NKF7_MSG),
time_us : time_us,
AZbias : (int8_t)(100*azbias),
scaleX : (int16_t)(100*gyroScaleFactor.x),
scaleY : (int16_t)(100*gyroScaleFactor.y),
scaleZ : (int16_t)(100*gyroScaleFactor.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
index : (uint8_t)(magIndex)
};
WriteBlock(&pkt7, sizeof(pkt7));
// Write 8th EKF packet
ahrs.get_NavEKF2().getInnovations(1,velInnov, posInnov, magInnov, tasInnov, yawInnov);
struct log_NKF3 pkt8 = {
LOG_PACKET_HEADER_INIT(LOG_NKF8_MSG),
time_us : time_us,
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov)
};
WriteBlock(&pkt8, sizeof(pkt8));
// Write 9th EKF packet
ahrs.get_NavEKF2().getVariances(1,velVar, posVar, hgtVar, magVar, tasVar, offset);
tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
ahrs.get_NavEKF2().getFilterFaults(1,faultStatus);
ahrs.get_NavEKF2().getFilterTimeouts(1,timeoutStatus);
ahrs.get_NavEKF2().getFilterStatus(1,solutionStatus);
ahrs.get_NavEKF2().getFilterGpsStatus(1,gpsStatus);
ahrs.get_NavEKF2().getTiltError(1,tiltError);
struct log_NKF4 pkt9 = {
LOG_PACKET_HEADER_INIT(LOG_NKF9_MSG),
time_us : time_us,
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : (float)tiltError,
offsetNorth : (int8_t)(offset.x),
offsetEast : (int8_t)(offset.y),
faults : (uint16_t)(faultStatus),
timeouts : (uint8_t)(timeoutStatus),
solution : (uint16_t)(solutionStatus.value),
gps : (uint16_t)(gpsStatus.value),
primary : (int8_t)primaryIndex
};
WriteBlock(&pkt9, sizeof(pkt9));
ahrs.get_NavEKF2().getQuaternion(1, quat);
struct log_Quaternion pktq2 = {
LOG_PACKET_HEADER_INIT(LOG_NKQ2_MSG),
time_us : time_us,
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
WriteBlock(&pktq2, sizeof(pktq2));
}
// write range beacon fusion debug packet if the range value is non-zero
if (ahrs.get_beacon() != nullptr) {
uint8_t ID;
float rng;
float innovVar;
float innov;
float testRatio;
Vector3f beaconPosNED;
float bcnPosOffsetHigh;
float bcnPosOffsetLow;
if (ahrs.get_NavEKF2().getRangeBeaconDebug(-1, ID, rng, innov, innovVar, testRatio, beaconPosNED, bcnPosOffsetHigh, bcnPosOffsetLow)) {
if (rng > 0.0f) {
struct log_RngBcnDebug pkt10 = {
LOG_PACKET_HEADER_INIT(LOG_NKF10_MSG),
time_us : time_us,
ID : (uint8_t)ID,
rng : (int16_t)(100*rng),
innov : (int16_t)(100*innov),
sqrtInnovVar : (uint16_t)(100*safe_sqrt(innovVar)),
testRatio : (uint16_t)(100*constrain_float(testRatio,0.0f,650.0f)),
beaconPosN : (int16_t)(100*beaconPosNED.x),
beaconPosE : (int16_t)(100*beaconPosNED.y),
beaconPosD : (int16_t)(100*beaconPosNED.z),
offsetHigh : (int16_t)(100*bcnPosOffsetHigh),
offsetLow : (int16_t)(100*bcnPosOffsetLow),
posN : 0,
posE : 0,
posD : 0
};
WriteBlock(&pkt10, sizeof(pkt10));
}
}
}
// log EKF timing statistics every 5s
static uint32_t lastTimingLogTime_ms = 0;
if (AP_HAL::millis() - lastTimingLogTime_ms > 5000) {
lastTimingLogTime_ms = AP_HAL::millis();
struct ekf_timing timing;
for (uint8_t i=0; i<ahrs.get_NavEKF2().activeCores(); i++) {
ahrs.get_NavEKF2().getTimingStatistics(i, timing);
Write_EKF_Timing(i==0?"NKT1":"NKT2", time_us, timing);
}
}
}
void AP_Logger::Write_EKF3(AP_AHRS_NavEKF &ahrs)
{
uint64_t time_us = AP_HAL::micros64();
// Write first EKF packet
Vector3f euler;
Vector2f posNE;
float posD;
Vector3f velNED;
Vector3f gyroBias;
float posDownDeriv;
Location originLLH;
ahrs.get_NavEKF3().getEulerAngles(0,euler);
ahrs.get_NavEKF3().getVelNED(0,velNED);
ahrs.get_NavEKF3().getPosNE(0,posNE);
ahrs.get_NavEKF3().getPosD(0,posD);
ahrs.get_NavEKF3().getGyroBias(0,gyroBias);
posDownDeriv = ahrs.get_NavEKF3().getPosDownDerivative(0);
if (!ahrs.get_NavEKF3().getOriginLLH(0,originLLH)) {
originLLH.alt = 0;
}
struct log_EKF1 pkt = {
LOG_PACKET_HEADER_INIT(LOG_XKF1_MSG),
time_us : time_us,
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
WriteBlock(&pkt, sizeof(pkt));
// Write second EKF packet
Vector3f accelBias;
Vector3f wind;
Vector3f magNED;
Vector3f magXYZ;
uint8_t magIndex = ahrs.get_NavEKF3().getActiveMag(0);
ahrs.get_NavEKF3().getAccelBias(0,accelBias);
ahrs.get_NavEKF3().getWind(0,wind);
ahrs.get_NavEKF3().getMagNED(0,magNED);
ahrs.get_NavEKF3().getMagXYZ(0,magXYZ);
struct log_NKF2a pkt2 = {
LOG_PACKET_HEADER_INIT(LOG_XKF2_MSG),
time_us : time_us,
accBiasX : (int16_t)(100*accelBias.x),
accBiasY : (int16_t)(100*accelBias.y),
accBiasZ : (int16_t)(100*accelBias.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
index : (uint8_t)(magIndex)
};
WriteBlock(&pkt2, sizeof(pkt2));
// Write third EKF packet
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov = 0;
float yawInnov = 0;
ahrs.get_NavEKF3().getInnovations(0,velInnov, posInnov, magInnov, tasInnov, yawInnov);
struct log_NKF3 pkt3 = {
LOG_PACKET_HEADER_INIT(LOG_XKF3_MSG),
time_us : time_us,
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov)
};
WriteBlock(&pkt3, sizeof(pkt3));
// Write fourth EKF packet
float velVar = 0;
float posVar = 0;
float hgtVar = 0;
Vector3f magVar;
float tasVar = 0;
Vector2f offset;
uint16_t faultStatus=0;
uint8_t timeoutStatus=0;
nav_filter_status solutionStatus {};
nav_gps_status gpsStatus {};
ahrs.get_NavEKF3().getVariances(0,velVar, posVar, hgtVar, magVar, tasVar, offset);
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
ahrs.get_NavEKF3().getFilterFaults(0,faultStatus);
ahrs.get_NavEKF3().getFilterTimeouts(0,timeoutStatus);
ahrs.get_NavEKF3().getFilterStatus(0,solutionStatus);
ahrs.get_NavEKF3().getFilterGpsStatus(0,gpsStatus);
float tiltError;
ahrs.get_NavEKF3().getTiltError(0,tiltError);
uint8_t primaryIndex = ahrs.get_NavEKF3().getPrimaryCoreIndex();
struct log_NKF4 pkt4 = {
LOG_PACKET_HEADER_INIT(LOG_XKF4_MSG),
time_us : time_us,
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : (float)tiltError,
offsetNorth : (int8_t)(offset.x),
offsetEast : (int8_t)(offset.y),
faults : (uint16_t)(faultStatus),
timeouts : (uint8_t)(timeoutStatus),
solution : (uint16_t)(solutionStatus.value),
gps : (uint16_t)(gpsStatus.value),
primary : (int8_t)primaryIndex
};
WriteBlock(&pkt4, sizeof(pkt4));
// Write fifth EKF packet - take data from the primary instance
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator
float HAGL=0; // height above ground level
float rngInnov=0; // range finder innovations
float range=0; // measured range
float gndOffsetErr=0; // filter ground offset state error
Vector3f predictorErrors; // output predictor angle, velocity and position tracking error
ahrs.get_NavEKF3().getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr);
ahrs.get_NavEKF3().getOutputTrackingError(-1,predictorErrors);
struct log_NKF5 pkt5 = {
LOG_PACKET_HEADER_INIT(LOG_XKF5_MSG),
time_us : time_us,
normInnov : (uint8_t)(MIN(100*normInnov,255)),
FIX : (int16_t)(1000*flowInnovX),
FIY : (int16_t)(1000*flowInnovY),
AFI : (int16_t)(1000*auxFlowInnov),
HAGL : (int16_t)(100*HAGL),
offset : (int16_t)(100*gndOffset),
RI : (int16_t)(100*rngInnov),
meaRng : (uint16_t)(100*range),
errHAGL : (uint16_t)(100*gndOffsetErr),
angErr : (float)predictorErrors.x,
velErr : (float)predictorErrors.y,
posErr : (float)predictorErrors.z
};
WriteBlock(&pkt5, sizeof(pkt5));
// log quaternion
Quaternion quat;
ahrs.get_NavEKF3().getQuaternion(0, quat);
struct log_Quaternion pktq1 = {
LOG_PACKET_HEADER_INIT(LOG_XKQ1_MSG),
time_us : time_us,
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
WriteBlock(&pktq1, sizeof(pktq1));
// log innovations for the second IMU if enabled
if (ahrs.get_NavEKF3().activeCores() >= 2) {
// Write 6th EKF packet
ahrs.get_NavEKF3().getEulerAngles(1,euler);
ahrs.get_NavEKF3().getVelNED(1,velNED);
ahrs.get_NavEKF3().getPosNE(1,posNE);
ahrs.get_NavEKF3().getPosD(1,posD);
ahrs.get_NavEKF3().getGyroBias(1,gyroBias);
posDownDeriv = ahrs.get_NavEKF3().getPosDownDerivative(1);
if (!ahrs.get_NavEKF3().getOriginLLH(1,originLLH)) {
originLLH.alt = 0;
}
struct log_EKF1 pkt6 = {
LOG_PACKET_HEADER_INIT(LOG_XKF6_MSG),
time_us : time_us,
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
WriteBlock(&pkt6, sizeof(pkt6));
// Write 7th EKF packet
ahrs.get_NavEKF3().getAccelBias(1,accelBias);
ahrs.get_NavEKF3().getWind(1,wind);
ahrs.get_NavEKF3().getMagNED(1,magNED);
ahrs.get_NavEKF3().getMagXYZ(1,magXYZ);
magIndex = ahrs.get_NavEKF3().getActiveMag(1);
struct log_NKF2a pkt7 = {
LOG_PACKET_HEADER_INIT(LOG_XKF7_MSG),
time_us : time_us,
accBiasX : (int16_t)(100*accelBias.x),
accBiasY : (int16_t)(100*accelBias.y),
accBiasZ : (int16_t)(100*accelBias.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
index : (uint8_t)(magIndex)
};
WriteBlock(&pkt7, sizeof(pkt7));
// Write 8th EKF packet
ahrs.get_NavEKF3().getInnovations(1,velInnov, posInnov, magInnov, tasInnov, yawInnov);
struct log_NKF3 pkt8 = {
LOG_PACKET_HEADER_INIT(LOG_XKF8_MSG),
time_us : time_us,
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov)
};
WriteBlock(&pkt8, sizeof(pkt8));
// Write 9th EKF packet
ahrs.get_NavEKF3().getVariances(1,velVar, posVar, hgtVar, magVar, tasVar, offset);
tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
ahrs.get_NavEKF3().getFilterFaults(1,faultStatus);
ahrs.get_NavEKF3().getFilterTimeouts(1,timeoutStatus);
ahrs.get_NavEKF3().getFilterStatus(1,solutionStatus);
ahrs.get_NavEKF3().getFilterGpsStatus(1,gpsStatus);
ahrs.get_NavEKF3().getTiltError(1,tiltError);
struct log_NKF4 pkt9 = {
LOG_PACKET_HEADER_INIT(LOG_XKF9_MSG),
time_us : time_us,
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : (float)tiltError,
offsetNorth : (int8_t)(offset.x),
offsetEast : (int8_t)(offset.y),
faults : (uint16_t)(faultStatus),
timeouts : (uint8_t)(timeoutStatus),
solution : (uint16_t)(solutionStatus.value),
gps : (uint16_t)(gpsStatus.value),
primary : (int8_t)primaryIndex
};
WriteBlock(&pkt9, sizeof(pkt9));
// log quaternion
ahrs.get_NavEKF3().getQuaternion(1, quat);
struct log_Quaternion pktq2 = {
LOG_PACKET_HEADER_INIT(LOG_XKQ2_MSG),
time_us : time_us,
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
WriteBlock(&pktq2, sizeof(pktq2));
}
// write range beacon fusion debug packet if the range value is non-zero
uint8_t ID;
float rng;
float innovVar;
float innov;
float testRatio;
Vector3f beaconPosNED;
float bcnPosOffsetHigh;
float bcnPosOffsetLow;
Vector3f posNED;
if (ahrs.get_NavEKF3().getRangeBeaconDebug(-1, ID, rng, innov, innovVar, testRatio, beaconPosNED, bcnPosOffsetHigh, bcnPosOffsetLow, posNED)) {
if (rng > 0.0f) {
struct log_RngBcnDebug pkt10 = {
LOG_PACKET_HEADER_INIT(LOG_XKF10_MSG),
time_us : time_us,
ID : (uint8_t)ID,
rng : (int16_t)(100*rng),
innov : (int16_t)(100*innov),
sqrtInnovVar : (uint16_t)(100*sqrtf(innovVar)),
testRatio : (uint16_t)(100*constrain_float(testRatio,0.0f,650.0f)),
beaconPosN : (int16_t)(100*beaconPosNED.x),
beaconPosE : (int16_t)(100*beaconPosNED.y),
beaconPosD : (int16_t)(100*beaconPosNED.z),
offsetHigh : (int16_t)(100*bcnPosOffsetHigh),
offsetLow : (int16_t)(100*bcnPosOffsetLow),
posN : (int16_t)(100*posNED.x),
posE : (int16_t)(100*posNED.y),
posD : (int16_t)(100*posNED.z)
};
WriteBlock(&pkt10, sizeof(pkt10));
}
}
// write debug data for body frame odometry fusion
Vector3f velBodyInnov,velBodyInnovVar;
static uint32_t lastUpdateTime_ms = 0;
uint32_t updateTime_ms = ahrs.get_NavEKF3().getBodyFrameOdomDebug(-1, velBodyInnov, velBodyInnovVar);
if (updateTime_ms > lastUpdateTime_ms) {
struct log_ekfBodyOdomDebug pkt11 = {
LOG_PACKET_HEADER_INIT(LOG_XKFD_MSG),
time_us : time_us,
velInnovX : velBodyInnov.x,
velInnovY : velBodyInnov.y,
velInnovZ : velBodyInnov.z,
velInnovVarX : velBodyInnovVar.x,
velInnovVarY : velBodyInnovVar.y,
velInnovVarZ : velBodyInnovVar.z
};
WriteBlock(&pkt11, sizeof(pkt11));
lastUpdateTime_ms = updateTime_ms;
}
// log state variances every 0.49s
static uint32_t lastEkfStateVarLogTime_ms = 0;
if (AP_HAL::millis() - lastEkfStateVarLogTime_ms > 490) {
lastEkfStateVarLogTime_ms = AP_HAL::millis();
float stateVar[24];
ahrs.get_NavEKF3().getStateVariances(-1, stateVar);
struct log_ekfStateVar pktv1 = {
LOG_PACKET_HEADER_INIT(LOG_XKV1_MSG),
time_us : time_us,
v00 : stateVar[0],
v01 : stateVar[1],
v02 : stateVar[2],
v03 : stateVar[3],
v04 : stateVar[4],
v05 : stateVar[5],
v06 : stateVar[6],
v07 : stateVar[7],
v08 : stateVar[8],
v09 : stateVar[9],
v10 : stateVar[10],
v11 : stateVar[11]
};
WriteBlock(&pktv1, sizeof(pktv1));
struct log_ekfStateVar pktv2 = {
LOG_PACKET_HEADER_INIT(LOG_XKV2_MSG),
time_us : time_us,
v00 : stateVar[12],
v01 : stateVar[13],
v02 : stateVar[14],
v03 : stateVar[15],
v04 : stateVar[16],
v05 : stateVar[17],
v06 : stateVar[18],
v07 : stateVar[19],
v08 : stateVar[20],
v09 : stateVar[21],
v10 : stateVar[22],
v11 : stateVar[23]
};
WriteBlock(&pktv2, sizeof(pktv2));
}
// log EKF timing statistics every 5s
static uint32_t lastTimingLogTime_ms = 0;
if (AP_HAL::millis() - lastTimingLogTime_ms > 5000) {
lastTimingLogTime_ms = AP_HAL::millis();
struct ekf_timing timing;
for (uint8_t i=0; i<ahrs.get_NavEKF3().activeCores(); i++) {
ahrs.get_NavEKF3().getTimingStatistics(i, timing);
Write_EKF_Timing(i==0?"XKT1":"XKT2", time_us, timing);
}
}
}
#endif
void AP_Logger::Write_Radio(const mavlink_radio_t &packet)
{
struct log_Radio pkt = {
LOG_PACKET_HEADER_INIT(LOG_RADIO_MSG),
time_us : AP_HAL::micros64(),
rssi : packet.rssi,
remrssi : packet.remrssi,
txbuf : packet.txbuf,
noise : packet.noise,
remnoise : packet.remnoise,
rxerrors : packet.rxerrors,
fixed : packet.fixed
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a Camera packet
void AP_Logger::Write_CameraInfo(enum LogMessages msg, const AP_AHRS &ahrs, const Location &current_loc, uint64_t timestamp_us)
{
int32_t altitude, altitude_rel, altitude_gps;
if (current_loc.relative_alt) {
altitude = current_loc.alt+ahrs.get_home().alt;
altitude_rel = current_loc.alt;
} else {
altitude = current_loc.alt;
altitude_rel = current_loc.alt - ahrs.get_home().alt;
}
const AP_GPS &gps = AP::gps();
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
altitude_gps = gps.location().alt;
} else {
altitude_gps = 0;
}
struct log_Camera pkt = {
LOG_PACKET_HEADER_INIT(static_cast<uint8_t>(msg)),
time_us : timestamp_us?timestamp_us:AP_HAL::micros64(),
gps_time : gps.time_week_ms(),
gps_week : gps.time_week(),
latitude : current_loc.lat,
longitude : current_loc.lng,
altitude : altitude,
altitude_rel: altitude_rel,
altitude_gps: altitude_gps,
roll : (int16_t)ahrs.roll_sensor,
pitch : (int16_t)ahrs.pitch_sensor,
yaw : (uint16_t)ahrs.yaw_sensor
};
WriteCriticalBlock(&pkt, sizeof(pkt));
}
// Write a Camera packet
void AP_Logger::Write_Camera(const AP_AHRS &ahrs, const Location &current_loc, uint64_t timestamp_us)
{
Write_CameraInfo(LOG_CAMERA_MSG, ahrs, current_loc, timestamp_us);
}
// Write a Trigger packet
void AP_Logger::Write_Trigger(const AP_AHRS &ahrs, const Location &current_loc)
{
Write_CameraInfo(LOG_TRIGGER_MSG, ahrs, current_loc, 0);
}
// Write an attitude packet
void AP_Logger::Write_Attitude(AP_AHRS &ahrs, const Vector3f &targets)
{
struct log_Attitude pkt = {
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG),
time_us : AP_HAL::micros64(),
control_roll : (int16_t)targets.x,
roll : (int16_t)ahrs.roll_sensor,
control_pitch : (int16_t)targets.y,
pitch : (int16_t)ahrs.pitch_sensor,
control_yaw : (uint16_t)wrap_360_cd(targets.z),
yaw : (uint16_t)wrap_360_cd(ahrs.yaw_sensor),
error_rp : (uint16_t)(ahrs.get_error_rp() * 100),
error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100)
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write an attitude packet
void AP_Logger::Write_AttitudeView(AP_AHRS_View &ahrs, const Vector3f &targets)
{
struct log_Attitude pkt = {
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG),
time_us : AP_HAL::micros64(),
control_roll : (int16_t)targets.x,
roll : (int16_t)ahrs.roll_sensor,
control_pitch : (int16_t)targets.y,
pitch : (int16_t)ahrs.pitch_sensor,
control_yaw : (uint16_t)targets.z,
yaw : (uint16_t)ahrs.yaw_sensor,
error_rp : (uint16_t)(ahrs.get_error_rp() * 100),
error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100)
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_Current_instance(const uint64_t time_us,
const uint8_t battery_instance,
const enum LogMessages type,
const enum LogMessages celltype)
{
AP_BattMonitor &battery = AP::battery();
float temp;
bool has_temp = battery.get_temperature(temp, battery_instance);
struct log_Current pkt = {
LOG_PACKET_HEADER_INIT(type),
time_us : time_us,
voltage : battery.voltage(battery_instance),
voltage_resting : battery.voltage_resting_estimate(battery_instance),
current_amps : battery.current_amps(battery_instance),
current_total : battery.consumed_mah(battery_instance),
consumed_wh : battery.consumed_wh(battery_instance),
temperature : (int16_t)(has_temp ? (temp * 100) : 0),
resistance : battery.get_resistance(battery_instance)
};
WriteBlock(&pkt, sizeof(pkt));
// individual cell voltages
if (battery.has_cell_voltages(battery_instance)) {
const AP_BattMonitor::cells &cells = battery.get_cell_voltages(battery_instance);
struct log_Current_Cells cell_pkt = {
LOG_PACKET_HEADER_INIT(celltype),
time_us : time_us,
voltage : battery.voltage(battery_instance)
};
for (uint8_t i = 0; i < ARRAY_SIZE(cells.cells); i++) {
cell_pkt.cell_voltages[i] = cells.cells[i] + 1;
}
WriteBlock(&cell_pkt, sizeof(cell_pkt));
// check battery structure can hold all cells
static_assert(ARRAY_SIZE(cells.cells) == (sizeof(cell_pkt.cell_voltages) / sizeof(cell_pkt.cell_voltages[0])),
"Battery cell number doesn't match in library and log structure");
}
}
// Write an Current data packet
void AP_Logger::Write_Current()
{
// Big painful assert to ensure that logging won't produce suprising results when the
// number of battery monitors changes, does have the built in expectation that
// LOG_COMPASS_MSG follows the last LOG_CURRENT_CELLSx_MSG
static_assert(((LOG_CURRENT_MSG + AP_BATT_MONITOR_MAX_INSTANCES) == LOG_CURRENT_CELLS_MSG) &&
((LOG_CURRENT_CELLS_MSG + AP_BATT_MONITOR_MAX_INSTANCES) == LOG_COMPASS_MSG),
"The number of batt monitors has changed without updating the log "
"table entries. Please add new enums for LOG_CURRENT_MSG, LOG_CURRENT_CELLS_MSG "
"directly following the highest indexed fields. Don't forget to update the log "
"description table as well.");
const uint64_t time_us = AP_HAL::micros64();
const uint8_t num_instances = AP::battery().num_instances();
for (uint8_t i = 0; i < num_instances; i++) {
Write_Current_instance(time_us,
i,
(LogMessages)((uint8_t)LOG_CURRENT_MSG + i),
(LogMessages)((uint8_t)LOG_CURRENT_CELLS_MSG + i));
}
}
void AP_Logger::Write_Compass_instance(const uint64_t time_us, const uint8_t mag_instance, const enum LogMessages type)
{
const Compass &compass = AP::compass();
const Vector3f &mag_field = compass.get_field(mag_instance);
const Vector3f &mag_offsets = compass.get_offsets(mag_instance);
const Vector3f &mag_motor_offsets = compass.get_motor_offsets(mag_instance);
struct log_Compass pkt = {
LOG_PACKET_HEADER_INIT(type),
time_us : time_us,
mag_x : (int16_t)mag_field.x,
mag_y : (int16_t)mag_field.y,
mag_z : (int16_t)mag_field.z,
offset_x : (int16_t)mag_offsets.x,
offset_y : (int16_t)mag_offsets.y,
offset_z : (int16_t)mag_offsets.z,
motor_offset_x : (int16_t)mag_motor_offsets.x,
motor_offset_y : (int16_t)mag_motor_offsets.y,
motor_offset_z : (int16_t)mag_motor_offsets.z,
health : (uint8_t)compass.healthy(mag_instance),
SUS : compass.last_update_usec(mag_instance)
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a Compass packet
void AP_Logger::Write_Compass(uint64_t time_us)
{
if (time_us == 0) {
time_us = AP_HAL::micros64();
}
const Compass &compass = AP::compass();
if (compass.get_count() > 0) {
Write_Compass_instance(time_us, 0, LOG_COMPASS_MSG);
}
if (compass.get_count() > 1) {
Write_Compass_instance(time_us, 1, LOG_COMPASS2_MSG);
}
if (compass.get_count() > 2) {
Write_Compass_instance(time_us, 2, LOG_COMPASS3_MSG);
}
}
// Write a mode packet.
bool AP_Logger_Backend::Write_Mode(uint8_t mode, uint8_t reason)
{
struct log_Mode pkt = {
LOG_PACKET_HEADER_INIT(LOG_MODE_MSG),
time_us : AP_HAL::micros64(),
mode : mode,
mode_num : mode,
mode_reason : reason
};
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
// Write ESC status messages
void AP_Logger::Write_ESC(void)
{
}
// Write a AIRSPEED packet
void AP_Logger::Write_Airspeed(AP_Airspeed &airspeed)
{
uint64_t now = AP_HAL::micros64();
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
if (!airspeed.enabled(i)) {
continue;
}
float temperature;
if (!airspeed.get_temperature(i, temperature)) {
temperature = 0;
}
struct log_AIRSPEED pkt = {
LOG_PACKET_HEADER_INIT(i==0?LOG_ARSP_MSG:LOG_ASP2_MSG),
time_us : now,
airspeed : airspeed.get_raw_airspeed(i),
diffpressure : airspeed.get_differential_pressure(i),
temperature : (int16_t)(temperature * 100.0f),
rawpressure : airspeed.get_corrected_pressure(i),
offset : airspeed.get_offset(i),
use : airspeed.use(i),
healthy : airspeed.healthy(i),
primary : airspeed.get_primary()
};
WriteBlock(&pkt, sizeof(pkt));
}
}
// Write a Yaw PID packet
void AP_Logger::Write_PID(uint8_t msg_type, const PID_Info &info)
{
struct log_PID pkt = {
LOG_PACKET_HEADER_INIT(msg_type),
time_us : AP_HAL::micros64(),
desired : info.desired,
actual : info.actual,
P : info.P,
I : info.I,
D : info.D,
FF : info.FF
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_Origin(uint8_t origin_type, const Location &loc)
{
uint64_t time_us = AP_HAL::micros64();
struct log_ORGN pkt = {
LOG_PACKET_HEADER_INIT(LOG_ORGN_MSG),
time_us : time_us,
origin_type : origin_type,
latitude : loc.lat,
longitude : loc.lng,
altitude : loc.alt
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_RPM(const AP_RPM &rpm_sensor)
{
struct log_RPM pkt = {
LOG_PACKET_HEADER_INIT(LOG_RPM_MSG),
time_us : AP_HAL::micros64(),
rpm1 : rpm_sensor.get_rpm(0),
rpm2 : rpm_sensor.get_rpm(1)
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a rate packet
void AP_Logger::Write_Rate(const AP_AHRS_View *ahrs,
const AP_Motors &motors,
const AC_AttitudeControl &attitude_control,
const AC_PosControl &pos_control)
{
const Vector3f &rate_targets = attitude_control.rate_bf_targets();
const Vector3f &accel_target = pos_control.get_accel_target();
struct log_Rate pkt_rate = {
LOG_PACKET_HEADER_INIT(LOG_RATE_MSG),
time_us : AP_HAL::micros64(),
control_roll : degrees(rate_targets.x),
roll : degrees(ahrs->get_gyro().x),
roll_out : motors.get_roll(),
control_pitch : degrees(rate_targets.y),
pitch : degrees(ahrs->get_gyro().y),
pitch_out : motors.get_pitch(),
control_yaw : degrees(rate_targets.z),
yaw : degrees(ahrs->get_gyro().z),
yaw_out : motors.get_yaw(),
control_accel : (float)accel_target.z,
accel : (float)(-(ahrs->get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f),
accel_out : motors.get_throttle()
};
WriteBlock(&pkt_rate, sizeof(pkt_rate));
}
// Write rally points
void AP_Logger::Write_Rally(const AP_Rally &rally)
{
RallyLocation rally_point;
for (uint8_t i=0; i<rally.get_rally_total(); i++) {
if (rally.get_rally_point_with_index(i, rally_point)) {
struct log_Rally pkt_rally = {
LOG_PACKET_HEADER_INIT(LOG_RALLY_MSG),
time_us : AP_HAL::micros64(),
total : rally.get_rally_total(),
sequence : i,
latitude : rally_point.lat,
longitude : rally_point.lng,
altitude : rally_point.alt
};
WriteBlock(&pkt_rally, sizeof(pkt_rally));
}
}
}
// Write visual odometry sensor data
void AP_Logger::Write_VisualOdom(float time_delta, const Vector3f &angle_delta, const Vector3f &position_delta, float confidence)
{
struct log_VisualOdom pkt_visualodom = {
LOG_PACKET_HEADER_INIT(LOG_VISUALODOM_MSG),
time_us : AP_HAL::micros64(),
time_delta : time_delta,
angle_delta_x : angle_delta.x,
angle_delta_y : angle_delta.y,
angle_delta_z : angle_delta.z,
position_delta_x : position_delta.x,
position_delta_y : position_delta.y,
position_delta_z : position_delta.z,
confidence : confidence
};
WriteBlock(&pkt_visualodom, sizeof(log_VisualOdom));
}
// Write AOA and SSA
void AP_Logger::Write_AOA_SSA(AP_AHRS &ahrs)
{
struct log_AOA_SSA aoa_ssa = {
LOG_PACKET_HEADER_INIT(LOG_AOA_SSA_MSG),
time_us : AP_HAL::micros64(),
AOA : ahrs.getAOA(),
SSA : ahrs.getSSA()
};
WriteBlock(&aoa_ssa, sizeof(aoa_ssa));
}
// Write beacon sensor (position) data
void AP_Logger::Write_Beacon(AP_Beacon &beacon)
{
if (!beacon.enabled()) {
return;
}
// position
Vector3f pos;
float accuracy = 0.0f;
beacon.get_vehicle_position_ned(pos, accuracy);
struct log_Beacon pkt_beacon = {
LOG_PACKET_HEADER_INIT(LOG_BEACON_MSG),
time_us : AP_HAL::micros64(),
health : (uint8_t)beacon.healthy(),
count : (uint8_t)beacon.count(),
dist0 : beacon.beacon_distance(0),
dist1 : beacon.beacon_distance(1),
dist2 : beacon.beacon_distance(2),
dist3 : beacon.beacon_distance(3),
posx : pos.x,
posy : pos.y,
posz : pos.z
};
WriteBlock(&pkt_beacon, sizeof(pkt_beacon));
}
// Write proximity sensor distances
void AP_Logger::Write_Proximity(AP_Proximity &proximity)
{
// exit immediately if not enabled
if (proximity.get_status() == AP_Proximity::Proximity_NotConnected) {
return;
}
AP_Proximity::Proximity_Distance_Array dist_array {};
proximity.get_horizontal_distances(dist_array);
float dist_up;
if (!proximity.get_upward_distance(dist_up)) {
dist_up = 0.0f;
}
float close_ang = 0.0f, close_dist = 0.0f;
proximity.get_closest_object(close_ang, close_dist);
struct log_Proximity pkt_proximity = {
LOG_PACKET_HEADER_INIT(LOG_PROXIMITY_MSG),
time_us : AP_HAL::micros64(),
health : (uint8_t)proximity.get_status(),
dist0 : dist_array.distance[0],
dist45 : dist_array.distance[1],
dist90 : dist_array.distance[2],
dist135 : dist_array.distance[3],
dist180 : dist_array.distance[4],
dist225 : dist_array.distance[5],
dist270 : dist_array.distance[6],
dist315 : dist_array.distance[7],
distup : dist_up,
closest_angle : close_ang,
closest_dist : close_dist
};
WriteBlock(&pkt_proximity, sizeof(pkt_proximity));
}
void AP_Logger::Write_SRTL(bool active, uint16_t num_points, uint16_t max_points, uint8_t action, const Vector3f& breadcrumb)
{
struct log_SRTL pkt_srtl = {
LOG_PACKET_HEADER_INIT(LOG_SRTL_MSG),
time_us : AP_HAL::micros64(),
active : active,
num_points : num_points,
max_points : max_points,
action : action,
N : breadcrumb.x,
E : breadcrumb.y,
D : breadcrumb.z
};
WriteBlock(&pkt_srtl, sizeof(pkt_srtl));
}