mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
1277 lines
43 KiB
Plaintext
1277 lines
43 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#define THISFIRMWARE "ArduPlane V2.70"
|
|
/*
|
|
* Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher
|
|
* Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon
|
|
* Please contribute your ideas!
|
|
*
|
|
*
|
|
* This firmware is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Header includes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <math.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
|
|
#include <AP_Common.h>
|
|
#include <AP_Progmem.h>
|
|
#include <AP_HAL.h>
|
|
#include <AP_Menu.h>
|
|
#include <AP_Param.h>
|
|
#include <AP_GPS.h> // ArduPilot GPS library
|
|
#include <AP_Baro.h> // ArduPilot barometer library
|
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
|
#include <AP_ADC_AnalogSource.h>
|
|
#include <AP_InertialSensor.h> // Inertial Sensor Library
|
|
#include <AP_AHRS.h> // ArduPilot Mega DCM Library
|
|
#include <PID.h> // PID library
|
|
#include <RC_Channel.h> // RC Channel Library
|
|
#include <AP_RangeFinder.h> // Range finder library
|
|
#include <Filter.h> // Filter library
|
|
#include <AP_Buffer.h> // APM FIFO Buffer
|
|
#include <AP_Relay.h> // APM relay
|
|
#include <AP_Camera.h> // Photo or video camera
|
|
#include <AP_Airspeed.h>
|
|
#include <memcheck.h>
|
|
|
|
#include <APM_OBC.h>
|
|
#include <APM_Control.h>
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
|
#include <AP_Mount.h> // Camera/Antenna mount
|
|
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
|
|
#include <DataFlash.h>
|
|
#include <SITL.h>
|
|
|
|
// optional new controller library
|
|
#if APM_CONTROL == ENABLED
|
|
#include <APM_Control.h>
|
|
#endif
|
|
|
|
// Pre-AP_HAL compatibility
|
|
#include "compat.h"
|
|
|
|
// Configuration
|
|
#include "config.h"
|
|
|
|
// Local modules
|
|
#include "defines.h"
|
|
#include "Parameters.h"
|
|
#include "GCS.h"
|
|
|
|
#include <AP_HAL_AVR.h>
|
|
#include <AP_HAL_AVR_SITL.h>
|
|
#include <AP_HAL_PX4.h>
|
|
#include <AP_HAL_Empty.h>
|
|
|
|
AP_HAL::BetterStream* cliSerial;
|
|
|
|
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Outback Challenge Failsafe Support
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#if OBC_FAILSAFE == ENABLED
|
|
APM_OBC obc;
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// the rate we run the main loop at
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Global parameters are all contained within the 'g' class.
|
|
//
|
|
static Parameters g;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// prototypes
|
|
static void update_events(void);
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// DataFlash
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
DataFlash_APM1 DataFlash;
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
DataFlash_APM2 DataFlash;
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
|
DataFlash_SITL DataFlash;
|
|
#else
|
|
// no dataflash driver
|
|
DataFlash_Empty DataFlash;
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// There are three basic options related to flight sensor selection.
|
|
//
|
|
// - Normal flight mode. Real sensors are used.
|
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
|
// protocol supplies attitude information directly.
|
|
// - HIL Sensors mode. Synthetic sensors are configured that
|
|
// supply data from the simulation.
|
|
//
|
|
|
|
// All GPS access should be through this pointer.
|
|
static GPS *g_gps;
|
|
|
|
// flight modes convenience array
|
|
static AP_Int8 *flight_modes = &g.flight_mode1;
|
|
|
|
#if CONFIG_ADC == ENABLED
|
|
static AP_ADC_ADS7844 adc;
|
|
#endif
|
|
|
|
#if CONFIG_BARO == AP_BARO_BMP085
|
|
static AP_Baro_BMP085 barometer;
|
|
#elif CONFIG_BARO == AP_BARO_PX4
|
|
static AP_Baro_PX4 barometer;
|
|
#elif CONFIG_BARO == AP_BARO_HIL
|
|
static AP_Baro_BMP085_HIL barometer;
|
|
#elif CONFIG_BARO == AP_BARO_MS5611
|
|
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI
|
|
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi);
|
|
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C
|
|
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c);
|
|
#else
|
|
#error Unrecognized CONFIG_MS5611_SERIAL setting.
|
|
#endif
|
|
#else
|
|
#error Unrecognized CONFIG_BARO setting
|
|
#endif
|
|
|
|
#if CONFIG_COMPASS == AP_COMPASS_PX4
|
|
static AP_Compass_PX4 compass;
|
|
#elif CONFIG_COMPASS == AP_COMPASS_HMC5843
|
|
static AP_Compass_HMC5843 compass;
|
|
#elif CONFIG_COMPASS == AP_COMPASS_HIL
|
|
static AP_Compass_HIL compass;
|
|
#else
|
|
#error Unrecognized CONFIG_COMPASS setting
|
|
#endif
|
|
|
|
// GPS selection
|
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
|
AP_GPS_Auto g_gps_driver(&g_gps);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
|
AP_GPS_NMEA g_gps_driver;
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
|
AP_GPS_SIRF g_gps_driver;
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
|
AP_GPS_UBLOX g_gps_driver;
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
|
AP_GPS_MTK g_gps_driver;
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
|
|
AP_GPS_MTK19 g_gps_driver;
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
|
AP_GPS_None g_gps_driver;
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_HIL
|
|
AP_GPS_HIL g_gps_driver;
|
|
|
|
#else
|
|
#error Unrecognised GPS_PROTOCOL setting.
|
|
#endif // GPS PROTOCOL
|
|
|
|
#if CONFIG_INS_TYPE == CONFIG_INS_MPU6000
|
|
AP_InertialSensor_MPU6000 ins;
|
|
#elif CONFIG_INS_TYPE == CONFIG_INS_PX4
|
|
AP_InertialSensor_PX4 ins;
|
|
#elif CONFIG_INS_TYPE == CONFIG_INS_STUB
|
|
AP_InertialSensor_Stub ins;
|
|
#elif CONFIG_INS_TYPE == CONFIG_INS_OILPAN
|
|
AP_InertialSensor_Oilpan ins( &adc );
|
|
#else
|
|
#error Unrecognised CONFIG_INS_TYPE setting.
|
|
#endif // CONFIG_INS_TYPE
|
|
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE
|
|
AP_AHRS_HIL ahrs(&ins, g_gps);
|
|
#else
|
|
AP_AHRS_DCM ahrs(&ins, g_gps);
|
|
#endif
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
|
SITL sitl;
|
|
#endif
|
|
|
|
// Training mode
|
|
static bool training_manual_roll; // user has manual roll control
|
|
static bool training_manual_pitch; // user has manual pitch control
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GCS selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
GCS_MAVLINK gcs0;
|
|
GCS_MAVLINK gcs3;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Analog Inputs
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
AP_HAL::AnalogSource *pitot_analog_source;
|
|
|
|
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
|
|
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
|
|
AP_HAL::AnalogSource *rssi_analog_source;
|
|
|
|
AP_HAL::AnalogSource *vcc_pin;
|
|
|
|
AP_HAL::AnalogSource * batt_volt_pin;
|
|
AP_HAL::AnalogSource * batt_curr_pin;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Relay
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
AP_Relay relay;
|
|
|
|
// Camera
|
|
#if CAMERA == ENABLED
|
|
AP_Camera camera(&relay);
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// APM2 only
|
|
#if USB_MUX_PIN > 0
|
|
static bool usb_connected;
|
|
#endif
|
|
|
|
/* Radio values
|
|
* Channel assignments
|
|
* 1 Ailerons
|
|
* 2 Elevator
|
|
* 3 Throttle
|
|
* 4 Rudder
|
|
* 5 Aux5
|
|
* 6 Aux6
|
|
* 7 Aux7
|
|
* 8 Aux8/Mode
|
|
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
|
|
* See libraries/RC_Channel/RC_Channel_aux.h for more information
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Radio
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This is the state of the flight control system
|
|
// There are multiple states defined such as MANUAL, FBW-A, AUTO
|
|
enum FlightMode control_mode = INITIALISING;
|
|
// Used to maintain the state of the previous control switch position
|
|
// This is set to -1 when we need to re-read the switch
|
|
uint8_t oldSwitchPosition;
|
|
// This is used to enable the inverted flight feature
|
|
bool inverted_flight = false;
|
|
// These are trim values used for elevon control
|
|
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon
|
|
static uint16_t elevon1_trim = 1500;
|
|
static uint16_t elevon2_trim = 1500;
|
|
// These are used in the calculation of elevon1_trim and elevon2_trim
|
|
static uint16_t ch1_temp = 1500;
|
|
static uint16_t ch2_temp = 1500;
|
|
// These are values received from the GCS if the user is using GCS joystick
|
|
// control and are substituted for the values coming from the RC radio
|
|
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
|
|
// A flag if GCS joystick control is in use
|
|
static bool rc_override_active = false;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Failsafe
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// A tracking variable for type of failsafe active
|
|
// Used for failsafe based on loss of RC signal or GCS signal
|
|
static int16_t failsafe;
|
|
// Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold
|
|
// RC receiver should be set up to output a low throttle value when signal is lost
|
|
static bool ch3_failsafe;
|
|
// A timer used to help recovery from unusual attitudes. If we enter an unusual attitude
|
|
// while in autonomous flight this variable is used to hold roll at 0 for a recovery period
|
|
static uint8_t crash_timer;
|
|
|
|
// the time when the last HEARTBEAT message arrived from a GCS
|
|
static uint32_t last_heartbeat_ms;
|
|
|
|
// A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal
|
|
static uint32_t ch3_failsafe_timer = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// LED output
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// state of the GPS light (on/off)
|
|
static bool GPS_light;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GPS variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This is used to scale GPS values for EEPROM storage
|
|
// 10^7 times Decimal GPS means 1 == 1cm
|
|
// This approximation makes calculations integer and it's easy to read
|
|
static const float t7 = 10000000.0;
|
|
// We use atan2 and other trig techniques to calaculate angles
|
|
// A counter used to count down valid gps fixes to allow the gps estimate to settle
|
|
// before recording our home position (and executing a ground start if we booted with an air start)
|
|
static uint8_t ground_start_count = 5;
|
|
// Used to compute a speed estimate from the first valid gps fixes to decide if we are
|
|
// on the ground or in the air. Used to decide if a ground start is appropriate if we
|
|
// booted with an air start.
|
|
static int16_t ground_start_avg;
|
|
|
|
// true if we have a position estimate from AHRS
|
|
static bool have_position;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Location & Navigation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Constants
|
|
const float radius_of_earth = 6378100; // meters
|
|
|
|
// This is the currently calculated direction to fly.
|
|
// deg * 100 : 0 to 360
|
|
static int32_t nav_bearing_cd;
|
|
|
|
// This is the direction to the next waypoint or loiter center
|
|
// deg * 100 : 0 to 360
|
|
static int32_t target_bearing_cd;
|
|
|
|
//This is the direction from the last waypoint to the next waypoint
|
|
// deg * 100 : 0 to 360
|
|
static int32_t crosstrack_bearing_cd;
|
|
|
|
// Direction held during phases of takeoff and landing
|
|
// deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use
|
|
static int32_t hold_course = -1; // deg * 100 dir of plane
|
|
|
|
// There may be two active commands in Auto mode.
|
|
// This indicates the active navigation command by index number
|
|
static uint8_t nav_command_index;
|
|
// This indicates the active non-navigation command by index number
|
|
static uint8_t non_nav_command_index;
|
|
// This is the command type (eg navigate to waypoint) of the active navigation command
|
|
static uint8_t nav_command_ID = NO_COMMAND;
|
|
static uint8_t non_nav_command_ID = NO_COMMAND;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Airspeed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met.
|
|
// Also used for flap deployment criteria. Centimeters per second.
|
|
static int32_t target_airspeed_cm;
|
|
|
|
// The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second.
|
|
static float airspeed_error_cm;
|
|
|
|
// The calculated total energy error (kinetic (altitude) plus potential (airspeed)).
|
|
// Used by the throttle controller
|
|
static int32_t energy_error;
|
|
|
|
// kinetic portion of energy error (m^2/s^2)
|
|
static int32_t airspeed_energy_error;
|
|
|
|
// An amount that the airspeed should be increased in auto modes based on the user positioning the
|
|
// throttle stick in the top half of the range. Centimeters per second.
|
|
static int16_t airspeed_nudge_cm;
|
|
|
|
// Similar to airspeed_nudge, but used when no airspeed sensor.
|
|
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
|
|
static int16_t throttle_nudge = 0;
|
|
|
|
// receiver RSSI
|
|
static uint8_t receiver_rssi;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Ground speed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The amount current ground speed is below min ground speed. Centimeters per second
|
|
static int32_t groundspeed_undershoot = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Location Errors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Difference between current bearing and desired bearing. Hundredths of a degree
|
|
static int32_t bearing_error_cd;
|
|
|
|
// Difference between current altitude and desired altitude. Centimeters
|
|
static int32_t altitude_error_cm;
|
|
|
|
// Distance perpandicular to the course line that we are off trackline. Meters
|
|
static float crosstrack_error;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Battery Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup.
|
|
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
|
|
// Battery pack 1 instantaneous currrent draw. Amperes
|
|
static float current_amps1;
|
|
// Totalized current (Amp-hours) from battery 1
|
|
static float current_total1;
|
|
|
|
// To Do - Add support for second battery pack
|
|
//static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter
|
|
//static float current_amps2; // Current (Amperes) draw from battery 2
|
|
//static float current_total2; // Totalized current (Amp-hours) from battery 2
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Airspeed Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
AP_Airspeed airspeed;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Altitude Sensor variables
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// flight mode specific
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Flag for using gps ground course instead of INS yaw. Set false when takeoff command in process.
|
|
static bool takeoff_complete = true;
|
|
// Flag to indicate if we have landed.
|
|
//Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown
|
|
static bool land_complete;
|
|
// Altitude threshold to complete a takeoff command in autonomous modes. Centimeters
|
|
static int32_t takeoff_altitude;
|
|
|
|
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree
|
|
static int16_t takeoff_pitch_cd;
|
|
|
|
// this controls throttle suppression in auto modes
|
|
static bool throttle_suppressed;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Loiter management
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree
|
|
static int32_t old_target_bearing_cd;
|
|
|
|
// Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees
|
|
static int32_t loiter_total;
|
|
|
|
// Direction for loiter. 1 for clockwise, -1 for counter-clockwise
|
|
static int8_t loiter_direction = 1;
|
|
|
|
// The amount in degrees we have turned since recording old_target_bearing
|
|
static int16_t loiter_delta;
|
|
|
|
// Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees
|
|
static int32_t loiter_sum;
|
|
|
|
// The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds.
|
|
static uint32_t loiter_time_ms;
|
|
|
|
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds.
|
|
static uint32_t loiter_time_max_ms;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Navigation control variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The instantaneous desired bank angle. Hundredths of a degree
|
|
static int32_t nav_roll_cd;
|
|
|
|
// The instantaneous desired pitch angle. Hundredths of a degree
|
|
static int32_t nav_pitch_cd;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Waypoint distances
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Distance between plane and next waypoint. Meters
|
|
// is not static because AP_Camera uses it
|
|
uint32_t wp_distance;
|
|
|
|
// Distance between previous and next waypoint. Meters
|
|
static uint32_t wp_totalDistance;
|
|
|
|
// event control state
|
|
enum event_type {
|
|
EVENT_TYPE_RELAY=0,
|
|
EVENT_TYPE_SERVO=1
|
|
};
|
|
|
|
static struct {
|
|
enum event_type type;
|
|
|
|
// when the event was started in ms
|
|
uint32_t start_time_ms;
|
|
|
|
// how long to delay the next firing of event in millis
|
|
uint16_t delay_ms;
|
|
|
|
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
|
|
int16_t repeat;
|
|
|
|
// RC channel for servos
|
|
uint8_t rc_channel;
|
|
|
|
// PWM for servos
|
|
uint16_t servo_value;
|
|
|
|
// the value used to cycle events (alternate value to event_value)
|
|
uint16_t undo_value;
|
|
} event_state;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Conditional command
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// A value used in condition commands (eg delay, change alt, etc.)
|
|
// For example in a change altitude command, it is the altitude to change to.
|
|
static int32_t condition_value;
|
|
// A starting value used to check the status of a conditional command.
|
|
// For example in a delay command the condition_start records that start time for the delay
|
|
static uint32_t condition_start;
|
|
// A value used in condition commands. For example the rate at which to change altitude.
|
|
static int16_t condition_rate;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// 3D Location vectors
|
|
// Location structure defined in AP_Common
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The home location used for RTL. The location is set when we first get stable GPS lock
|
|
static struct Location home;
|
|
// Flag for if we have g_gps lock and have set the home location
|
|
static bool home_is_set;
|
|
// The location of the previous waypoint. Used for track following and altitude ramp calculations
|
|
static struct Location prev_WP;
|
|
// The plane's current location
|
|
static struct Location current_loc;
|
|
// The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations.
|
|
static struct Location next_WP;
|
|
// The location of the active waypoint in Guided mode.
|
|
static struct Location guided_WP;
|
|
// The location structure information from the Nav command being processed
|
|
static struct Location next_nav_command;
|
|
// The location structure information from the Non-Nav command being processed
|
|
static struct Location next_nonnav_command;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Altitude / Climb rate control
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters
|
|
static int32_t target_altitude_cm;
|
|
// Altitude difference between previous and current waypoint. Centimeters
|
|
static int32_t offset_altitude_cm;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// INS variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The main loop execution time. Seconds
|
|
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
|
|
static float G_Dt = 0.02;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Performance monitoring
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Timer used to accrue data and trigger recording of the performanc monitoring log message
|
|
static int32_t perf_mon_timer;
|
|
// The maximum main loop execution time recorded in the current performance monitoring interval
|
|
static int16_t G_Dt_max = 0;
|
|
// The number of gps fixes recorded in the current performance monitoring interval
|
|
static uint8_t gps_fix_count = 0;
|
|
// A variable used by developers to track performanc metrics.
|
|
// Currently used to record the number of GCS heartbeat messages received
|
|
static int16_t pmTest1 = 0;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// System Timers
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Time in miliseconds of start of main control loop. Milliseconds
|
|
static uint32_t fast_loopTimer_ms;
|
|
|
|
// Time Stamp when fast loop was complete. Milliseconds
|
|
static uint32_t fast_loopTimeStamp_ms;
|
|
|
|
// Number of milliseconds used in last main loop cycle
|
|
static uint8_t delta_ms_fast_loop;
|
|
|
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing
|
|
static uint16_t mainLoop_count;
|
|
|
|
// Time in miliseconds of start of medium control loop. Milliseconds
|
|
static uint32_t medium_loopTimer_ms;
|
|
|
|
// Counters for branching from main control loop to slower loops
|
|
static uint8_t medium_loopCounter;
|
|
// Number of milliseconds used in last medium loop cycle
|
|
static uint8_t delta_ms_medium_loop;
|
|
|
|
// Counters for branching from medium control loop to slower loops
|
|
static uint8_t slow_loopCounter;
|
|
// Counter to trigger execution of very low rate processes
|
|
static uint8_t superslow_loopCounter;
|
|
// Counter to trigger execution of 1 Hz processes
|
|
static uint8_t counter_one_herz;
|
|
|
|
// % MCU cycles used
|
|
static float load;
|
|
|
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff
|
|
// --------------------------------------
|
|
#if MOUNT == ENABLED
|
|
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
|
AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0);
|
|
#endif
|
|
|
|
#if MOUNT2 == ENABLED
|
|
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
|
AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1);
|
|
#endif
|
|
|
|
#if CAMERA == ENABLED
|
|
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82)
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Top-level logic
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// setup the var_info table
|
|
AP_Param param_loader(var_info, WP_START_BYTE);
|
|
|
|
void setup() {
|
|
// this needs to be the first call, as it fills memory with
|
|
// sentinel values
|
|
memcheck_init();
|
|
|
|
cliSerial = hal.console;
|
|
|
|
// load the default values of variables listed in var_info[]
|
|
AP_Param::setup_sketch_defaults();
|
|
|
|
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE, 0.25);
|
|
|
|
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
|
|
pitot_analog_source = new AP_ADC_AnalogSource( &adc,
|
|
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0);
|
|
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
|
|
pitot_analog_source = hal.analogin->channel(CONFIG_PITOT_SOURCE_ANALOG_PIN, CONFIG_PITOT_SCALING);
|
|
#endif
|
|
vcc_pin = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC);
|
|
|
|
batt_volt_pin = hal.analogin->channel(g.battery_volt_pin);
|
|
batt_curr_pin = hal.analogin->channel(g.battery_curr_pin);
|
|
|
|
airspeed.init(pitot_analog_source);
|
|
init_ardupilot();
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
// We want this to execute at 50Hz, but synchronised with the gyro/accel
|
|
uint16_t num_samples = ins.num_samples_available();
|
|
if (num_samples >= 1) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer_ms;
|
|
load = (float)(fast_loopTimeStamp_ms - fast_loopTimer_ms)/delta_ms_fast_loop;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f;
|
|
fast_loopTimer_ms = millis();
|
|
|
|
mainLoop_count++;
|
|
|
|
// Execute the fast loop
|
|
// ---------------------
|
|
fast_loop();
|
|
|
|
// Execute the medium loop
|
|
// -----------------------
|
|
medium_loop();
|
|
|
|
counter_one_herz++;
|
|
if(counter_one_herz == 50) {
|
|
one_second_loop();
|
|
counter_one_herz = 0;
|
|
}
|
|
|
|
if (millis() - perf_mon_timer > 20000) {
|
|
if (mainLoop_count != 0) {
|
|
if (g.log_bitmask & MASK_LOG_PM)
|
|
Log_Write_Performance();
|
|
resetPerfData();
|
|
}
|
|
}
|
|
|
|
fast_loopTimeStamp_ms = millis();
|
|
} else if (millis() - fast_loopTimeStamp_ms < 19) {
|
|
// less than 19ms has passed. We have at least one millisecond
|
|
// of free time. The most useful thing to do with that time is
|
|
// to accumulate some sensor readings, specifically the
|
|
// compass, which is often very noisy but is not interrupt
|
|
// driven, so it can't accumulate readings by itself
|
|
if (g.compass_enabled) {
|
|
compass.accumulate();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Main loop 50Hz
|
|
static void fast_loop()
|
|
{
|
|
// This is the fast loop - we want it to execute at 50Hz if possible
|
|
// -----------------------------------------------------------------
|
|
if (delta_ms_fast_loop > G_Dt_max)
|
|
G_Dt_max = delta_ms_fast_loop;
|
|
|
|
// Read radio
|
|
// ----------
|
|
read_radio();
|
|
|
|
// try to send any deferred messages if the serial port now has
|
|
// some space available
|
|
gcs_send_message(MSG_RETRY_DEFERRED);
|
|
|
|
// check for loss of control signal failsafe condition
|
|
// ------------------------------------
|
|
check_short_failsafe();
|
|
|
|
#if HIL_MODE == HIL_MODE_SENSORS
|
|
// update hil before AHRS update
|
|
gcs_update();
|
|
#endif
|
|
|
|
ahrs.update();
|
|
|
|
// uses the yaw from the DCM to give more accurate turns
|
|
calc_bearing_error();
|
|
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
|
|
Log_Write_Attitude();
|
|
|
|
if (g.log_bitmask & MASK_LOG_IMU)
|
|
Log_Write_IMU();
|
|
|
|
// inertial navigation
|
|
// ------------------
|
|
#if INERTIAL_NAVIGATION == ENABLED
|
|
// TODO: implement inertial nav function
|
|
inertialNavigation();
|
|
#endif
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
update_current_flight_mode();
|
|
|
|
// apply desired roll, pitch and yaw to the plane
|
|
// ----------------------------------------------
|
|
if (control_mode > MANUAL)
|
|
stabilize();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos();
|
|
|
|
gcs_update();
|
|
gcs_data_stream_send();
|
|
}
|
|
|
|
static void medium_loop()
|
|
{
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update_mount_position();
|
|
#endif
|
|
|
|
#if MOUNT2 == ENABLED
|
|
camera_mount2.update_mount_position();
|
|
#endif
|
|
|
|
#if CAMERA == ENABLED
|
|
camera.trigger_pic_cleanup();
|
|
#endif
|
|
|
|
// This is the start of the medium (10 Hz) loop pieces
|
|
// -----------------------------------------
|
|
switch(medium_loopCounter) {
|
|
|
|
// This case deals with the GPS
|
|
//-------------------------------
|
|
case 0:
|
|
medium_loopCounter++;
|
|
update_GPS();
|
|
calc_gndspeed_undershoot();
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if (g.compass_enabled && compass.read()) {
|
|
ahrs.set_compass(&compass);
|
|
compass.null_offsets();
|
|
} else {
|
|
ahrs.set_compass(NULL);
|
|
}
|
|
#endif
|
|
|
|
break;
|
|
|
|
// This case performs some navigation computations
|
|
//------------------------------------------------
|
|
case 1:
|
|
medium_loopCounter++;
|
|
|
|
// Read 6-position switch on radio
|
|
// -------------------------------
|
|
read_control_switch();
|
|
|
|
// calculate the plane's desired bearing
|
|
// -------------------------------------
|
|
navigate();
|
|
|
|
break;
|
|
|
|
// command processing
|
|
//------------------------------
|
|
case 2:
|
|
medium_loopCounter++;
|
|
|
|
// Read Airspeed
|
|
// -------------
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if (airspeed.enabled()) {
|
|
read_airspeed();
|
|
}
|
|
#endif
|
|
|
|
read_receiver_rssi();
|
|
|
|
// Read altitude from sensors
|
|
// ------------------
|
|
update_alt();
|
|
|
|
// altitude smoothing
|
|
// ------------------
|
|
if (control_mode != FLY_BY_WIRE_B)
|
|
calc_altitude_error();
|
|
|
|
// perform next command
|
|
// --------------------
|
|
update_commands();
|
|
break;
|
|
|
|
// This case deals with sending high rate telemetry
|
|
//-------------------------------------------------
|
|
case 3:
|
|
medium_loopCounter++;
|
|
|
|
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST))
|
|
Log_Write_Attitude();
|
|
|
|
if (g.log_bitmask & MASK_LOG_CTUN)
|
|
Log_Write_Control_Tuning();
|
|
|
|
if (g.log_bitmask & MASK_LOG_NTUN)
|
|
Log_Write_Nav_Tuning();
|
|
|
|
if (g.log_bitmask & MASK_LOG_GPS)
|
|
Log_Write_GPS();
|
|
break;
|
|
|
|
// This case controls the slow loop
|
|
//---------------------------------
|
|
case 4:
|
|
medium_loopCounter = 0;
|
|
delta_ms_medium_loop = millis() - medium_loopTimer_ms;
|
|
medium_loopTimer_ms = millis();
|
|
|
|
if (g.battery_monitoring != 0) {
|
|
read_battery();
|
|
}
|
|
|
|
slow_loop();
|
|
|
|
#if OBC_FAILSAFE == ENABLED
|
|
// perform OBC failsafe checks
|
|
obc.check(OBC_MODE(control_mode),
|
|
last_heartbeat_ms,
|
|
g_gps ? g_gps->last_fix_time : 0);
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void slow_loop()
|
|
{
|
|
// This is the slow (3 1/3 Hz) loop pieces
|
|
//----------------------------------------
|
|
switch (slow_loopCounter) {
|
|
case 0:
|
|
slow_loopCounter++;
|
|
check_long_failsafe();
|
|
superslow_loopCounter++;
|
|
if(superslow_loopCounter >=200) { // 200 = Execute every minute
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if(g.compass_enabled) {
|
|
compass.save_offsets();
|
|
}
|
|
#endif
|
|
|
|
superslow_loopCounter = 0;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
slow_loopCounter++;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11);
|
|
#else
|
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
|
|
#endif
|
|
enable_aux_servos();
|
|
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update_mount_type();
|
|
#endif
|
|
#if MOUNT2 == ENABLED
|
|
camera_mount2.update_mount_type();
|
|
#endif
|
|
break;
|
|
|
|
case 2:
|
|
slow_loopCounter = 0;
|
|
update_events();
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter
|
|
|
|
check_usb_mux();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void one_second_loop()
|
|
{
|
|
if (g.log_bitmask & MASK_LOG_CURRENT)
|
|
Log_Write_Current();
|
|
|
|
// send a heartbeat
|
|
gcs_send_message(MSG_HEARTBEAT);
|
|
}
|
|
|
|
static void update_GPS(void)
|
|
{
|
|
g_gps->update();
|
|
update_GPS_light();
|
|
|
|
// get position from AHRS
|
|
have_position = ahrs.get_position(¤t_loc);
|
|
|
|
if (g_gps->new_data && g_gps->fix) {
|
|
g_gps->new_data = false;
|
|
|
|
// for performance
|
|
// ---------------
|
|
gps_fix_count++;
|
|
|
|
if(ground_start_count > 1) {
|
|
ground_start_count--;
|
|
ground_start_avg += g_gps->ground_speed;
|
|
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
ground_start_count = 5;
|
|
|
|
} else {
|
|
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT) {
|
|
startup_ground();
|
|
|
|
if (g.log_bitmask & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
|
|
init_home();
|
|
} else if (ENABLE_AIR_START == 0) {
|
|
init_home();
|
|
}
|
|
|
|
if (g.compass_enabled) {
|
|
// Set compass declination automatically
|
|
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
|
|
}
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
// see if we've breached the geo-fence
|
|
geofence_check(false);
|
|
}
|
|
}
|
|
|
|
static void update_current_flight_mode(void)
|
|
{
|
|
if(control_mode == AUTO) {
|
|
crash_checker();
|
|
|
|
switch(nav_command_ID) {
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
if (hold_course != -1 && g.rudder_steer == 0) {
|
|
calc_nav_roll();
|
|
} else {
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
if (alt_control_airspeed()) {
|
|
calc_nav_pitch();
|
|
if (nav_pitch_cd < takeoff_pitch_cd)
|
|
nav_pitch_cd = takeoff_pitch_cd;
|
|
} else {
|
|
nav_pitch_cd = (g_gps->ground_speed / (float)g.airspeed_cruise_cm) * takeoff_pitch_cd;
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, 500, takeoff_pitch_cd);
|
|
}
|
|
|
|
#if APM_CONTROL == DISABLED
|
|
float aspeed;
|
|
if (ahrs.airspeed_estimate(&aspeed)) {
|
|
// don't use a pitch/roll integrators during takeoff if we are
|
|
// below minimum speed
|
|
if (aspeed < g.flybywire_airspeed_min) {
|
|
g.pidServoPitch.reset_I();
|
|
g.pidServoRoll.reset_I();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// max throttle for takeoff
|
|
g.channel_throttle.servo_out = g.throttle_max;
|
|
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LAND:
|
|
if (g.rudder_steer == 0 || !land_complete) {
|
|
calc_nav_roll();
|
|
} else {
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
if (land_complete) {
|
|
// hold pitch constant in final approach
|
|
nav_pitch_cd = g.land_pitch_cd;
|
|
} else {
|
|
calc_nav_pitch();
|
|
if (!alt_control_airspeed()) {
|
|
// when not under airspeed control, don't allow
|
|
// down pitch in landing
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, 0, nav_pitch_cd);
|
|
}
|
|
}
|
|
calc_throttle();
|
|
|
|
if (land_complete) {
|
|
// we are in the final stage of a landing - force
|
|
// zero throttle
|
|
g.channel_throttle.servo_out = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// we are doing normal AUTO flight, the special cases
|
|
// are for takeoff and landing
|
|
hold_course = -1;
|
|
land_complete = false;
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
}
|
|
}else{
|
|
// hold_course is only used in takeoff and landing
|
|
hold_course = -1;
|
|
|
|
switch(control_mode) {
|
|
case RTL:
|
|
case LOITER:
|
|
case GUIDED:
|
|
crash_checker();
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case TRAINING: {
|
|
training_manual_roll = false;
|
|
training_manual_pitch = false;
|
|
|
|
// if the roll is past the set roll limit, then
|
|
// we set target roll to the limit
|
|
if (ahrs.roll_sensor >= g.roll_limit_cd) {
|
|
nav_roll_cd = g.roll_limit_cd;
|
|
} else if (ahrs.roll_sensor <= -g.roll_limit_cd) {
|
|
nav_roll_cd = -g.roll_limit_cd;
|
|
} else {
|
|
training_manual_roll = true;
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
// if the pitch is past the set pitch limits, then
|
|
// we set target pitch to the limit
|
|
if (ahrs.pitch_sensor >= g.pitch_limit_max_cd) {
|
|
nav_pitch_cd = g.pitch_limit_max_cd;
|
|
} else if (ahrs.pitch_sensor <= g.pitch_limit_min_cd) {
|
|
nav_pitch_cd = g.pitch_limit_min_cd;
|
|
} else {
|
|
training_manual_pitch = true;
|
|
nav_pitch_cd = 0;
|
|
}
|
|
if (inverted_flight) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FLY_BY_WIRE_A: {
|
|
// set nav_roll and nav_pitch using sticks
|
|
nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd;
|
|
float pitch_input = g.channel_pitch.norm_input();
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd = pitch_input * g.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd = -(pitch_input * g.pitch_limit_min_cd);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get());
|
|
if (inverted_flight) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FLY_BY_WIRE_B:
|
|
// Substitute stick inputs for Navigation control output
|
|
// We use g.pitch_limit_min because its magnitude is
|
|
// normally greater than g.pitch_limit_max
|
|
|
|
// Thanks to Yury MonZon for the altitude limit code!
|
|
|
|
nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd;
|
|
|
|
float elevator_input;
|
|
elevator_input = g.channel_pitch.norm_input();
|
|
|
|
if (g.flybywire_elev_reverse) {
|
|
elevator_input = -elevator_input;
|
|
}
|
|
if ((adjusted_altitude_cm() >= home.alt+g.FBWB_min_altitude_cm) || (g.FBWB_min_altitude_cm == 0)) {
|
|
altitude_error_cm = elevator_input * g.pitch_limit_min_cd;
|
|
} else {
|
|
altitude_error_cm = (home.alt + g.FBWB_min_altitude_cm) - adjusted_altitude_cm();
|
|
if (elevator_input < 0) {
|
|
altitude_error_cm += elevator_input * g.pitch_limit_min_cd;
|
|
}
|
|
}
|
|
calc_throttle();
|
|
calc_nav_pitch();
|
|
break;
|
|
|
|
case STABILIZE:
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
// throttle is passthrough
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// we have no GPS installed and have lost radio contact
|
|
// or we just want to fly around in a gentle circle w/o GPS,
|
|
// holding altitude at the altitude we set when we
|
|
// switched into the mode
|
|
nav_roll_cd = g.roll_limit_cd / 3;
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case MANUAL:
|
|
// servo_out is for Sim control only
|
|
// ---------------------------------
|
|
g.channel_roll.servo_out = g.channel_roll.pwm_to_angle();
|
|
g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle();
|
|
g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle();
|
|
break;
|
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
|
|
|
|
case INITIALISING:
|
|
case AUTO:
|
|
// handled elsewhere
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
|
|
// distance and bearing calcs only
|
|
switch(control_mode) {
|
|
case AUTO:
|
|
verify_commands();
|
|
break;
|
|
|
|
case LOITER:
|
|
case RTL:
|
|
case GUIDED:
|
|
update_loiter();
|
|
calc_bearing_error();
|
|
break;
|
|
|
|
case MANUAL:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case INITIALISING:
|
|
case FLY_BY_WIRE_A:
|
|
case FLY_BY_WIRE_B:
|
|
case CIRCLE:
|
|
// nothing to do
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void update_alt()
|
|
{
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE
|
|
current_loc.alt = g_gps->altitude;
|
|
#else
|
|
// this function is in place to potentially add a sonar sensor in the future
|
|
//altitude_sensor = BARO;
|
|
|
|
if (barometer.healthy) {
|
|
current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100)
|
|
current_loc.alt += g.altitude_mix * (read_barometer() + home.alt);
|
|
} else if (g_gps->fix) {
|
|
current_loc.alt = g_gps->altitude; // alt_MSL centimeters (meters * 100)
|
|
}
|
|
#endif
|
|
|
|
geofence_check(true);
|
|
|
|
// Calculate new climb rate
|
|
//if(medium_loopCounter == 0 && slow_loopCounter == 0)
|
|
// add_altitude_data(millis() / 100, g_gps->altitude / 10);
|
|
}
|
|
|
|
AP_HAL_MAIN();
|