mirror of https://github.com/ArduPilot/ardupilot
523 lines
14 KiB
C++
523 lines
14 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
//
|
|
// This is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License as published by the
|
|
// Free Software Foundation; either version 2.1 of the License, or (at
|
|
// your option) any later version.
|
|
//
|
|
/// The AP variable interface. This allows different types
|
|
/// of variables to be passed to blocks for floating point
|
|
/// math, memory management, etc.
|
|
|
|
#include "AP_Var.h"
|
|
|
|
// Global constants exported for general use.
|
|
//
|
|
AP_Float AP_Float_unity ( 1.0, AP_Var::k_key_none, NULL, AP_Var::k_flag_unlisted);
|
|
AP_Float AP_Float_negative_unity(-1.0, AP_Var::k_key_none, NULL, AP_Var::k_flag_unlisted);
|
|
AP_Float AP_Float_zero ( 0.0, AP_Var::k_key_none, NULL, AP_Var::k_flag_unlisted);
|
|
|
|
|
|
// Static member variables for AP_Var.
|
|
//
|
|
AP_Var *AP_Var::_variables;
|
|
AP_Var *AP_Var::_grouped_variables;
|
|
uint16_t AP_Var::_tail_sentinel;
|
|
bool AP_Var::_EEPROM_scanned;
|
|
|
|
|
|
// Constructor for standalone variables
|
|
//
|
|
AP_Var::AP_Var(Key key, const prog_char *name, Flags flags) :
|
|
_group(NULL),
|
|
_key(key | k_key_not_located),
|
|
_name(name),
|
|
_flags(flags)
|
|
{
|
|
// Insert the variable or group into the list of known variables, unless
|
|
// it wants to be unlisted.
|
|
//
|
|
if (!has_flags(k_flag_unlisted)) {
|
|
_link = _variables;
|
|
_variables = this;
|
|
}
|
|
}
|
|
|
|
// Constructor for variables in a group
|
|
//
|
|
AP_Var::AP_Var(AP_Var_group *group, Key index, const prog_char *name, Flags flags) :
|
|
_group(group),
|
|
_key(index),
|
|
_name(name),
|
|
_flags(flags)
|
|
{
|
|
AP_Var **vp;
|
|
|
|
// Sort the variable into the list of group-member variables.
|
|
//
|
|
// This list is kept sorted so that groups can traverse forwards along
|
|
// it in order to enumerate their members in key order.
|
|
//
|
|
// We use a pointer-to-pointer insertion technique here; vp points
|
|
// to the pointer to the node that we are considering inserting in front of.
|
|
//
|
|
vp = &_grouped_variables;
|
|
while (*vp != NULL) {
|
|
if ((*vp)->_key > _key) {
|
|
break;
|
|
}
|
|
vp = &((*vp)->_link);
|
|
}
|
|
_link = *vp;
|
|
*vp = this;
|
|
}
|
|
|
|
// Destructor
|
|
//
|
|
AP_Var::~AP_Var(void)
|
|
{
|
|
AP_Var **vp;
|
|
|
|
// Determine which list the variable may be in.
|
|
// If the variable is a group member and the group has already
|
|
// been destroyed, it may not be in any list.
|
|
//
|
|
if (_group) {
|
|
vp = &_grouped_variables;
|
|
} else {
|
|
vp = &_variables;
|
|
}
|
|
|
|
// Scan the list and remove this if we find it
|
|
while (*vp) {
|
|
if (*vp == this) {
|
|
*vp = _link;
|
|
break;
|
|
}
|
|
vp = &((*vp)->_link);
|
|
}
|
|
|
|
// If we are destroying a group, remove all its variables from the list
|
|
//
|
|
if (has_flags(k_flag_is_group)) {
|
|
|
|
// Scan the list and remove any variable that has this as its group
|
|
vp = &_grouped_variables;
|
|
while (*vp) {
|
|
|
|
// Does the variable claim us as its group?
|
|
if ((*vp)->_group == this) {
|
|
*vp = (*vp)->_link;
|
|
continue;
|
|
}
|
|
vp = &((*vp)->_link);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy the variable's whole name to the supplied buffer.
|
|
//
|
|
// If the variable is a group member, prepend the group name.
|
|
//
|
|
void AP_Var::copy_name(char *buffer, size_t buffer_size) const
|
|
{
|
|
buffer[0] = '\0';
|
|
if (_group)
|
|
_group->copy_name(buffer, buffer_size);
|
|
strlcat_P(buffer, _name, buffer_size);
|
|
}
|
|
|
|
// Save the variable to EEPROM, if supported
|
|
//
|
|
bool AP_Var::save(void)
|
|
{
|
|
uint8_t vbuf[k_size_max];
|
|
size_t size;
|
|
|
|
// if the variable is a group member, save the group
|
|
if (_group) {
|
|
return _group->save();
|
|
}
|
|
|
|
// locate the variable in EEPROM, allocating space as required
|
|
if (!_EEPROM_locate(true)) {
|
|
return false;
|
|
}
|
|
|
|
// serialize the variable into the buffer and work out how big it is
|
|
size = serialize(vbuf, sizeof(vbuf));
|
|
|
|
// if it fit in the buffer, save it to EEPROM
|
|
if (size <= sizeof(vbuf)) {
|
|
eeprom_write_block(vbuf, (void *)_key, size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Load the variable from EEPROM, if supported
|
|
//
|
|
bool AP_Var::load(void)
|
|
{
|
|
uint8_t vbuf[k_size_max];
|
|
size_t size;
|
|
|
|
// if the variable is a group member, load the group
|
|
if (_group) {
|
|
return _group->load();
|
|
}
|
|
|
|
// locate the variable in EEPROM, but do not allocate space
|
|
if (!_EEPROM_locate(false)) {
|
|
return false;
|
|
}
|
|
|
|
// ask the unserializer how big the variable is
|
|
//
|
|
// XXX should check size in EEPROM var header too...
|
|
//
|
|
size = unserialize(NULL, 0);
|
|
|
|
// Read the buffer from EEPROM, now that _EEPROM_locate
|
|
// has converted _key into an EEPROM address.
|
|
//
|
|
if (size <= sizeof(vbuf)) {
|
|
eeprom_read_block(vbuf, (void *)_key, size);
|
|
unserialize(vbuf, size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Save all variables that don't opt out.
|
|
//
|
|
//
|
|
bool AP_Var::save_all(void)
|
|
{
|
|
bool result = true;
|
|
AP_Var *p = _variables;
|
|
|
|
while (p) {
|
|
if (!p->has_flags(k_flag_no_auto_load) && // not opted out
|
|
!(p->_group)) { // not saved with a group
|
|
|
|
if (!p->save()) {
|
|
result = false;
|
|
}
|
|
}
|
|
p = p->_link;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Load all variables that don't opt out.
|
|
//
|
|
bool AP_Var::load_all(void)
|
|
{
|
|
bool result;
|
|
AP_Var *p = _variables;
|
|
|
|
while (p) {
|
|
if (!p->has_flags(k_flag_no_auto_load) && // not opted out
|
|
!(p->_group)) { // not loaded with a group
|
|
|
|
if (!p->load()) {
|
|
result = false;
|
|
}
|
|
}
|
|
p = p->_link;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Erase all variables in EEPROM.
|
|
//
|
|
void
|
|
AP_Var::erase_all()
|
|
{
|
|
uint8_t c;
|
|
|
|
// overwrite the first byte of the header, invalidating the EEPROM
|
|
//
|
|
c = 0xff;
|
|
eeprom_write_byte(&c, 0);
|
|
}
|
|
|
|
// Return the key for a variable.
|
|
//
|
|
AP_Var::Key
|
|
AP_Var::key(void)
|
|
{
|
|
Var_header var_header;
|
|
|
|
if (_group) { // group members don't have keys
|
|
return k_key_none;
|
|
}
|
|
if (_key && k_key_not_located) { // if not located, key is in memory
|
|
return _key & k_key_mask;
|
|
}
|
|
|
|
// read key from EEPROM
|
|
eeprom_read_block(&var_header, (void *)_key, sizeof(var_header));
|
|
return var_header.key;
|
|
}
|
|
|
|
// Return the next variable in the global list.
|
|
//
|
|
AP_Var *
|
|
AP_Var::next(void)
|
|
{
|
|
// If there is a variable after this one, return it.
|
|
//
|
|
if (_link)
|
|
return _link;
|
|
|
|
// If we are at the end of the _variables list, _group will be NULL; in that
|
|
// case, move to the _grouped_variables list.
|
|
//
|
|
if (!_group) {
|
|
return _grouped_variables;
|
|
}
|
|
|
|
// We must be at the end of the _grouped_variables list, nothing remains.
|
|
//
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// Return the first variable that is a member of the group.
|
|
//
|
|
AP_Var *
|
|
AP_Var::first_member(AP_Var_group *group)
|
|
{
|
|
AP_Var **vp;
|
|
|
|
vp = &_grouped_variables;
|
|
|
|
while (*vp) {
|
|
if ((*vp)->_group == group) {
|
|
return *vp;
|
|
}
|
|
vp = &((*vp)->_link);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Return the next variable that is a member of the same group.
|
|
AP_Var *
|
|
AP_Var::next_member()
|
|
{
|
|
AP_Var *vp;
|
|
|
|
vp = _link;
|
|
while (vp) {
|
|
if (vp->_group == _group) {
|
|
return vp;
|
|
}
|
|
vp = vp->_link;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Scan the EEPROM and assign addresses to all the variables that
|
|
// are known and found therein.
|
|
//
|
|
bool AP_Var::_EEPROM_scan(void)
|
|
{
|
|
struct EEPROM_header ee_header;
|
|
struct Var_header var_header;
|
|
AP_Var *vp;
|
|
|
|
// assume that the EEPROM is empty
|
|
_tail_sentinel = 0;
|
|
|
|
// read the header and validate
|
|
eeprom_read_block(0, &ee_header, sizeof(ee_header));
|
|
if ((ee_header.magic != k_EEPROM_magic) ||
|
|
(ee_header.revision != k_EEPROM_revision))
|
|
return false;
|
|
|
|
// scan the EEPROM
|
|
//
|
|
// Avoid trying to read a header when there isn't enough space left.
|
|
//
|
|
_tail_sentinel = sizeof(ee_header);
|
|
while (_tail_sentinel < (k_EEPROM_size - sizeof(var_header) - 1)) {
|
|
|
|
// read a variable header
|
|
eeprom_read_block(&var_header, (void *)_tail_sentinel, sizeof(var_header));
|
|
|
|
// if the header is for the sentinel, scanning is complete
|
|
if (var_header.key == k_key_sentinel)
|
|
break;
|
|
|
|
// if the variable plus the sentinel would extend past the end of EEPROM, we are done
|
|
if (k_EEPROM_size <= (
|
|
_tail_sentinel + // current position
|
|
sizeof(ee_header) + // header for this variable
|
|
var_header.size + 1 + // data for this variable
|
|
sizeof(ee_header))) { // header for sentinel
|
|
break;
|
|
}
|
|
|
|
// look for a variable with this key
|
|
vp = _variables;
|
|
while (vp) {
|
|
if (vp->key() == var_header.key) {
|
|
// adjust the variable's key to point to this entry
|
|
vp->_key = _tail_sentinel;
|
|
break;
|
|
}
|
|
vp = vp->_link;
|
|
}
|
|
|
|
// move to the next variable header
|
|
_tail_sentinel += sizeof(var_header) + var_header.size + 1;
|
|
}
|
|
|
|
// Scanning is complete
|
|
_EEPROM_scanned = true;
|
|
return true;
|
|
}
|
|
|
|
// Locate a variable in EEPROM, allocating space if required.
|
|
//
|
|
bool AP_Var::_EEPROM_locate(bool allocate)
|
|
{
|
|
Var_header var_header;
|
|
Key new_location;
|
|
size_t size;
|
|
|
|
// Is it a group member, or does it have a no-location key?
|
|
//
|
|
if (_group || (_key == k_key_none)) {
|
|
return false; // it is/does, and thus it has no location
|
|
}
|
|
|
|
// Has the variable already been located?
|
|
//
|
|
if (!(_key & k_key_not_located)) {
|
|
return true; // it has
|
|
}
|
|
|
|
// If the EEPROM has not been scanned, try that now.
|
|
//
|
|
if (!_EEPROM_scanned) {
|
|
_EEPROM_scan();
|
|
}
|
|
|
|
// If not located and not permitted to allocate, we have failed.
|
|
//
|
|
if ((_key & k_key_not_located) && !allocate) {
|
|
return false;
|
|
}
|
|
|
|
// Ask the serializer for the size of the thing we are allocating, and fail
|
|
// if it is too large or if it has no size, as we will not be able to allocate
|
|
// space for it.
|
|
//
|
|
size = serialize(NULL, 0);
|
|
if ((size == 0) || (size > k_size_max))
|
|
return false;
|
|
|
|
// Make sure there will be space in the EEPROM for the variable, its
|
|
// header and the new tail sentinel.
|
|
//
|
|
if ((_tail_sentinel + size + sizeof(Var_header) * 2) > k_EEPROM_size)
|
|
return false;
|
|
|
|
// If there is no data in the EEPROM, write the header and move the
|
|
// sentinel.
|
|
//
|
|
if (0 == _tail_sentinel) {
|
|
EEPROM_header ee_header;
|
|
|
|
ee_header.magic = k_EEPROM_magic;
|
|
ee_header.revision = k_EEPROM_revision;
|
|
ee_header.spare = 0;
|
|
|
|
eeprom_write_block(0, &ee_header, sizeof(ee_header));
|
|
|
|
_tail_sentinel = sizeof(ee_header);
|
|
}
|
|
|
|
// Save the location we are going to insert at, and compute the new
|
|
// tail sentinel location.
|
|
//
|
|
_tail_sentinel += sizeof(Var_header) + size;
|
|
new_location = _tail_sentinel;
|
|
|
|
// Write the new sentinel first. If we are interrupted during this operation
|
|
// the old sentinel will still correctly terminate the EEPROM image.
|
|
//
|
|
var_header.key = k_key_sentinel;
|
|
var_header.size = 0;
|
|
eeprom_write_block(&var_header, (void *)_tail_sentinel, sizeof(var_header));
|
|
|
|
// Write the header for the block we have just located, claiming the EEPROM space.
|
|
//
|
|
var_header.key = key();
|
|
var_header.size = size - 1;
|
|
eeprom_write_block(&var_header, (void *)new_location, sizeof(Var_header));
|
|
|
|
// We have successfully allocated space and thus located the variable.
|
|
//
|
|
_key = new_location;
|
|
return true;
|
|
}
|
|
|
|
size_t
|
|
AP_Var_group::serialize(void *buf, size_t buf_size)
|
|
{
|
|
return _serialize_unserialize(buf, buf_size, true);
|
|
}
|
|
|
|
size_t
|
|
AP_Var_group::unserialize(void *buf, size_t buf_size)
|
|
{
|
|
return _serialize_unserialize(buf, buf_size, false);
|
|
}
|
|
|
|
size_t
|
|
AP_Var_group::_serialize_unserialize(void *buf, size_t buf_size, bool do_serialize)
|
|
{
|
|
AP_Var *vp;
|
|
uint8_t *bp;
|
|
size_t size, total_size, resid;
|
|
|
|
// Traverse the list of group members, serializing each in order
|
|
//
|
|
vp = first_member(this);
|
|
bp = (uint8_t *)buf;
|
|
resid = buf_size;
|
|
total_size = 0;
|
|
while (vp) {
|
|
|
|
// (un)serialise the group member
|
|
if (do_serialize) {
|
|
size = vp->serialize(bp, buf_size);
|
|
} else {
|
|
size = vp->unserialize(bp, buf_size);
|
|
}
|
|
|
|
// Account for the space that this variable consumes in the buffer
|
|
//
|
|
// We always count the total size, and we always advance the buffer pointer
|
|
// if there was room for the variable. This does mean that in the case where
|
|
// the buffer was too small for a variable in the middle of the group, that
|
|
// a smaller variable after it in the group may still be serialised into
|
|
// the buffer. Since that's a rare case it's not worth optimising for - in
|
|
// either case this function will return a size greater than the buffer size
|
|
// and the calling function will have to treat it as an error.
|
|
//
|
|
total_size += size;
|
|
if (size <= resid) {
|
|
// there was space for this one, account for it
|
|
resid -= size;
|
|
bp += size;
|
|
}
|
|
|
|
vp = vp->next_member();
|
|
}
|
|
return total_size;
|
|
}
|
|
|