mirror of https://github.com/ArduPilot/ardupilot
797 lines
25 KiB
C++
797 lines
25 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
copied from AP_InertialSensor_Invensense, removed aux bus and FIFO usage
|
|
this driver can be common Invensense driver for boards with connected DataReady pin if HAL API will be extended
|
|
to support IO_Complete callbacks
|
|
|
|
driver for all supported Invensense IMUs, including MPU6000, MPU9250
|
|
ICM-20608 and ICM-20602
|
|
*/
|
|
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT && defined(INVENSENSE_DRDY_PIN)
|
|
|
|
#include <assert.h>
|
|
#include <utility>
|
|
#include <stdio.h>
|
|
#include <AP_HAL/Util.h>
|
|
|
|
#include <AP_HAL_F4Light/GPIO.h>
|
|
#include <AP_HAL_F4Light/Scheduler.h>
|
|
#include <AP_HAL_F4Light/SPIDevice.h>
|
|
#include <AP_Param_Helper/AP_Param_Helper.h>
|
|
|
|
#include "AP_InertialSensor_Revo.h"
|
|
#include "AP_InertialSensor_Invensense_registers.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define debug(fmt, args ...) do {printf("MPU: " fmt "\n", ## args); } while(0)
|
|
|
|
/*
|
|
EXT_SYNC allows for frame synchronisation with an external device
|
|
such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit
|
|
*/
|
|
#ifndef INVENSENSE_EXT_SYNC_ENABLE
|
|
#define INVENSENSE_EXT_SYNC_ENABLE 0
|
|
#endif
|
|
|
|
|
|
#define MPU_SAMPLE_SIZE 14
|
|
#define MPU_FIFO_DOWNSAMPLE_COUNT 8
|
|
#define MPU_FIFO_BUFFER_LEN 64// ms of samples
|
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
|
|
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
|
|
|
|
/*
|
|
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
|
|
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
|
|
*/
|
|
static const float GYRO_SCALE = (0.0174532f / 16.4f);
|
|
|
|
#ifdef MPU_DEBUG_LOG
|
|
mpu_log_item AP_InertialSensor_Revo::mpu_log[MPU_LOG_SIZE] IN_CCM;
|
|
uint16_t AP_InertialSensor_Revo::mpu_log_ptr=0;
|
|
#endif
|
|
|
|
/*
|
|
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
|
|
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
|
|
*
|
|
* See note below about accel scaling of engineering sample MPU6k
|
|
* variants however
|
|
*/
|
|
|
|
AP_InertialSensor_Revo::AP_InertialSensor_Revo(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::Device> dev,
|
|
enum Rotation rotation)
|
|
: AP_InertialSensor_Backend(imu)
|
|
, _temp_filter(1000, 1)
|
|
, _rotation(rotation)
|
|
, _dev(std::move(dev))
|
|
, nodata_count(0)
|
|
, accel_len(0)
|
|
{
|
|
}
|
|
|
|
AP_InertialSensor_Revo::~AP_InertialSensor_Revo()
|
|
{
|
|
if (_fifo_buffer != nullptr) {
|
|
hal.util->free_type(_fifo_buffer, MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE);
|
|
}
|
|
}
|
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_Revo::probe(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
|
|
enum Rotation rotation)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_Revo::probe(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev,
|
|
enum Rotation rotation)
|
|
{
|
|
if (!dev) {
|
|
return nullptr;
|
|
}
|
|
AP_InertialSensor_Revo *sensor;
|
|
|
|
dev->set_read_flag(0x80);
|
|
|
|
sensor = new AP_InertialSensor_Revo(imu, std::move(dev), rotation);
|
|
if (!sensor || !sensor->_init()) {
|
|
delete sensor;
|
|
return nullptr;
|
|
}
|
|
if (sensor->_mpu_type == Invensense_MPU9250) {
|
|
sensor->_id = HAL_INS_MPU9250_SPI;
|
|
} else if (sensor->_mpu_type == Invensense_MPU6500) {
|
|
sensor->_id = HAL_INS_MPU6500;
|
|
} else {
|
|
sensor->_id = HAL_INS_MPU60XX_SPI;
|
|
}
|
|
|
|
return sensor;
|
|
}
|
|
|
|
bool AP_InertialSensor_Revo::_init()
|
|
{
|
|
_drdy_pin = hal.gpio->channel(INVENSENSE_DRDY_PIN);
|
|
_drdy_pin->mode(INPUT_PULLDOWN);
|
|
|
|
bool success = _hardware_init();
|
|
|
|
return success;
|
|
}
|
|
|
|
|
|
void AP_InertialSensor_Revo::_start(){
|
|
// initially run the bus at low speed
|
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
|
|
|
// setup ODR and on-sensor filtering
|
|
_set_filter_register();
|
|
|
|
// set sample rate to 1000Hz and apply a software filter
|
|
// In this configuration, the gyro sample rate is 8kHz
|
|
_register_write(MPUREG_SMPLRT_DIV, 0, true);
|
|
hal.scheduler->delay_microseconds(10);
|
|
|
|
// Gyro scale 2000º/s
|
|
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS, true);
|
|
hal.scheduler->delay_microseconds(10);
|
|
|
|
|
|
if (_mpu_type == Invensense_MPU6000 &&
|
|
((product_id == MPU6000ES_REV_C4) ||
|
|
(product_id == MPU6000ES_REV_C5) ||
|
|
(product_id == MPU6000_REV_C4) ||
|
|
(product_id == MPU6000_REV_C5))) {
|
|
// Accel scale 8g (4096 LSB/g)
|
|
// Rev C has different scaling than rev D
|
|
_register_write(MPUREG_ACCEL_CONFIG,1<<3, true);
|
|
_accel_scale = GRAVITY_MSS / 4096.f;
|
|
} else {
|
|
// Accel scale 16g (2048 LSB/g)
|
|
_register_write(MPUREG_ACCEL_CONFIG,3<<3, true);
|
|
_accel_scale = GRAVITY_MSS / 2048.f;
|
|
}
|
|
hal.scheduler->delay_microseconds(10);
|
|
|
|
if (_mpu_type == Invensense_ICM20608 ||
|
|
_mpu_type == Invensense_ICM20602) {
|
|
// this avoids a sensor bug, see description above
|
|
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true);
|
|
}
|
|
|
|
// configure interrupt to fire when new data arrives
|
|
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
|
|
hal.scheduler->delay_microseconds(10);
|
|
|
|
// clear interrupt on any read, and hold the data ready pin high
|
|
// until we clear the interrupt
|
|
_register_write(MPUREG_INT_PIN_CFG, _register_read(MPUREG_INT_PIN_CFG) | BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
|
|
|
|
// now that we have initialised, we set the bus speed to high
|
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
|
|
}
|
|
|
|
void AP_InertialSensor_Revo::start()
|
|
{
|
|
if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
|
|
return;
|
|
}
|
|
|
|
// initially run the bus at low speed
|
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
|
|
|
// only used for wake-up in accelerometer only low power mode
|
|
_register_write(MPUREG_PWR_MGMT_2, 0x00);
|
|
hal.scheduler->delay(1);
|
|
|
|
// never use buggy FIFO
|
|
// _fifo_reset();
|
|
|
|
// grab the used instances
|
|
enum DevTypes gdev, adev;
|
|
switch (_mpu_type) {
|
|
case Invensense_MPU9250:
|
|
gdev = DEVTYPE_GYR_MPU9250;
|
|
adev = DEVTYPE_ACC_MPU9250;
|
|
break;
|
|
case Invensense_MPU6000:
|
|
case Invensense_MPU6500:
|
|
case Invensense_ICM20608:
|
|
case Invensense_ICM20602:
|
|
default:
|
|
gdev = DEVTYPE_GYR_MPU6000;
|
|
adev = DEVTYPE_ACC_MPU6000;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
setup temperature sensitivity and offset. This varies
|
|
considerably between parts
|
|
*/
|
|
switch (_mpu_type) {
|
|
case Invensense_MPU9250:
|
|
temp_zero = 21;
|
|
temp_sensitivity = 1.0/340;
|
|
break;
|
|
|
|
case Invensense_MPU6000:
|
|
case Invensense_MPU6500:
|
|
temp_zero = 36.53;
|
|
temp_sensitivity = 1.0/340;
|
|
break;
|
|
|
|
case Invensense_ICM20608:
|
|
case Invensense_ICM20602:
|
|
temp_zero = 25;
|
|
temp_sensitivity = 1.0/326.8;
|
|
break;
|
|
}
|
|
|
|
_gyro_instance = _imu.register_gyro(1000, _dev->get_bus_id_devtype(gdev));
|
|
_accel_instance = _imu.register_accel(1000, _dev->get_bus_id_devtype(adev));
|
|
|
|
// read and remember the product ID rev c has 1/2 the sensitivity of rev d
|
|
product_id = _register_read(MPUREG_PRODUCT_ID);
|
|
|
|
_start(); // start MPU
|
|
|
|
_dev->get_semaphore()->give();
|
|
|
|
// setup sensor rotations from probe()
|
|
set_gyro_orientation(_gyro_instance, _rotation);
|
|
set_accel_orientation(_accel_instance, _rotation);
|
|
|
|
// allocate fifo buffer
|
|
_fifo_buffer = (uint8_t *)(hal.util->malloc_type((MPU_FIFO_BUFFER_LEN+1) * MPU_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE));
|
|
if (_fifo_buffer == nullptr) {
|
|
AP_HAL::panic("Invensense: Unable to allocate FIFO buffer");
|
|
}
|
|
|
|
GPIO::_attach_interrupt(INVENSENSE_DRDY_PIN, Scheduler::get_handler(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_isr, void)), RISING, MPU_INT_PRIORITY);
|
|
|
|
_register_read(MPUREG_INT_STATUS); // reset interrupt request
|
|
|
|
// some longer than MPU period
|
|
task_handle = Scheduler::register_timer_task(1010, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_poll_data, void), NULL); // period just for case, task will be activated by request
|
|
// REVOMINIScheduler::set_task_priority(task_handle, DRIVER_PRIORITY); // like other drivers
|
|
}
|
|
|
|
|
|
/*
|
|
publish any pending data
|
|
*/
|
|
bool AP_InertialSensor_Revo::update()
|
|
{
|
|
update_accel(_accel_instance);
|
|
update_gyro(_gyro_instance);
|
|
|
|
_publish_temperature(_accel_instance, _temp_filtered);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
accumulate new samples
|
|
*/
|
|
void AP_InertialSensor_Revo::accumulate()
|
|
{
|
|
// nothing to do
|
|
}
|
|
|
|
|
|
/*
|
|
* Return true if the Invensense has new data available for reading.
|
|
*
|
|
* We use the data ready pin if it is available. Otherwise, read the
|
|
* status register.
|
|
*/
|
|
bool AP_InertialSensor_Revo::_data_ready()
|
|
{
|
|
return _drdy_pin->read() != 0;
|
|
}
|
|
|
|
/*
|
|
ISR procedure for data read. Ring buffer don't needs to use semaphores for data access
|
|
|
|
also we don't own a bus semaphore and can't guarantee that bus is free. But in Revo MPU uses personal SPI bus so it is ABSOLUTELY free :)
|
|
*/
|
|
void AP_InertialSensor_Revo::_isr(){
|
|
uint8_t *data = _fifo_buffer + MPU_SAMPLE_SIZE * write_ptr;
|
|
// _fifo_buffer[write_ptr].time = REVOMINIScheduler::_micros64();
|
|
|
|
_dev->register_completion_callback(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Revo::_ioc, void)); // IO completion interrupt
|
|
|
|
_block_read(MPUREG_ACCEL_XOUT_H, data, MPU_SAMPLE_SIZE); // start SPI transfer
|
|
}
|
|
|
|
void AP_InertialSensor_Revo::_ioc(){ // io completion ISR, data already in its place
|
|
uint16_t new_wp = write_ptr+1;
|
|
if(new_wp >= MPU_FIFO_BUFFER_LEN) { // move write pointer
|
|
new_wp=0; // ring
|
|
}
|
|
if(new_wp == read_ptr) { // buffer overflow
|
|
#ifdef MPU_DEBUG
|
|
REVOMINIScheduler::MPU_buffer_overflow(); // count them
|
|
// not overwrite, just skip last data
|
|
#endif
|
|
} else {
|
|
write_ptr=new_wp; // move forward
|
|
}
|
|
|
|
//_dev->register_completion_callback(NULL);
|
|
// we should release the bus semaphore if we use them
|
|
// _dev->get_semaphore()->give(); // release
|
|
|
|
|
|
if(Scheduler::get_current_task() != (void *)task_handle) {
|
|
/*
|
|
REVOMINIScheduler::set_task_active(task_handle); // resume task instead of using period.
|
|
REVOMINIScheduler::context_switch_isr(); // and reschedule tasks after interrupt
|
|
*/
|
|
Scheduler::task_resume(task_handle); // resume task instead of using period.
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Timer process to poll for new data from the Invensense. Called from timer's interrupt or from personal thread
|
|
*/
|
|
void AP_InertialSensor_Revo::_poll_data()
|
|
{
|
|
_read_fifo();
|
|
}
|
|
|
|
bool AP_InertialSensor_Revo::_accumulate(uint8_t *samples, uint8_t n_samples)
|
|
{
|
|
bool ret=true;
|
|
for (uint8_t i = 0; i < n_samples; i++) {
|
|
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i;
|
|
Vector3f accel, gyro;
|
|
bool fsync_set = false;
|
|
|
|
|
|
accel = Vector3f(int16_val(data, 1),
|
|
int16_val(data, 0),
|
|
-int16_val(data, 2)) * _accel_scale;
|
|
|
|
int16_t t2 = int16_val(data, 3);
|
|
/*
|
|
if (!_check_raw_temp(t2)) {
|
|
debug("temp reset %d %d i=%d", _raw_temp, t2, i);
|
|
return false; // just skip this sample
|
|
}
|
|
*/
|
|
float temp = t2 * temp_sensitivity + temp_zero;
|
|
|
|
gyro = Vector3f(int16_val(data, 5),
|
|
int16_val(data, 4),
|
|
-int16_val(data, 6)) * GYRO_SCALE;
|
|
|
|
_rotate_and_correct_accel(_accel_instance, accel);
|
|
_rotate_and_correct_gyro(_gyro_instance, gyro);
|
|
|
|
#if 0 // filter out samples if vector length changed by 100% This is cool for debug but drops samples in the case of even weak blows
|
|
|
|
#define FILTER_KOEF 0.1
|
|
float len = accel.length();
|
|
if(is_zero(accel_len)) {
|
|
accel_len=len;
|
|
} else {
|
|
float d = abs(accel_len-len)/(accel_len+len);
|
|
if(d*100 > 50) { // difference more than 100% from mean value
|
|
debug("accel len error: mean %f got %f", accel_len, len );
|
|
ret= false; //just report
|
|
float k = FILTER_KOEF / (d*10); // 5 and more, so one bad sample never change mean more than 4%
|
|
accel_len = accel_len * (1-k) + len*k; // complimentary filter 1/k on bad samples
|
|
} else {
|
|
accel_len = accel_len * (1-FILTER_KOEF) + len*FILTER_KOEF; // complimentary filter 1/10 on good samples
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(ret) {
|
|
uint8_t kG = hal_param_helper->_correct_gyro;
|
|
if(kG){ // compensate gyro drift by long-time mean
|
|
float gyro_koef = 1.0 / (kG * 1000); // integrator time constant in seconds
|
|
gyro_mean = gyro_mean * (1-gyro_koef) + gyro*gyro_koef;
|
|
|
|
gyro -= gyro_mean;
|
|
}
|
|
|
|
_notify_new_accel_raw_sample(_accel_instance, accel, 0, fsync_set);
|
|
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
|
|
|
|
_temp_filtered = _temp_filter.apply(temp);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
when doing fast sampling the sensor gives us 8k samples/second. Every 2nd accel sample is a duplicate.
|
|
|
|
To filter this we first apply a 1p low pass filter at 188Hz, then we
|
|
average over 8 samples to bring the data rate down to 1kHz. This
|
|
gives very good aliasing rejection at frequencies well above what
|
|
can be handled with 1kHz sample rates.
|
|
*/
|
|
bool AP_InertialSensor_Revo::_accumulate_fast_sampling(uint8_t *samples, uint8_t n_samples)
|
|
{
|
|
int32_t tsum = 0;
|
|
const int32_t clip_limit = AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS / _accel_scale;
|
|
bool clipped = false;
|
|
bool ret = true;
|
|
|
|
for (uint8_t i = 0; i < n_samples; i++) {
|
|
const uint8_t *data = samples + MPU_SAMPLE_SIZE * i;
|
|
|
|
// use temperatue to detect FIFO corruption
|
|
int16_t t2 = int16_val(data, 3);
|
|
/* MPU don't likes such reads
|
|
if (!_check_raw_temp(t2)) {
|
|
debug("temp reset %d %d", _raw_temp, t2);
|
|
// _fifo_reset();
|
|
ret = false;
|
|
break;
|
|
}
|
|
*/
|
|
tsum += t2;
|
|
|
|
if ((_accum.count & 1) == 0) {
|
|
// accel data is at 4kHz
|
|
Vector3f a(int16_val(data, 1),
|
|
int16_val(data, 0),
|
|
-int16_val(data, 2));
|
|
if (fabsf(a.x) > clip_limit ||
|
|
fabsf(a.y) > clip_limit ||
|
|
fabsf(a.z) > clip_limit) {
|
|
clipped = true;
|
|
}
|
|
_accum.accel += _accum.accel_filter.apply(a);
|
|
}
|
|
|
|
Vector3f g(int16_val(data, 5),
|
|
int16_val(data, 4),
|
|
-int16_val(data, 6));
|
|
|
|
_accum.gyro += _accum.gyro_filter.apply(g);
|
|
_accum.count++;
|
|
|
|
if (_accum.count == MPU_FIFO_DOWNSAMPLE_COUNT) {
|
|
float ascale = _accel_scale / (MPU_FIFO_DOWNSAMPLE_COUNT/2);
|
|
_accum.accel *= ascale;
|
|
|
|
float gscale = GYRO_SCALE / MPU_FIFO_DOWNSAMPLE_COUNT;
|
|
_accum.gyro *= gscale;
|
|
|
|
_rotate_and_correct_accel(_accel_instance, _accum.accel);
|
|
_rotate_and_correct_gyro(_gyro_instance, _accum.gyro);
|
|
|
|
_notify_new_accel_raw_sample(_accel_instance, _accum.accel, 0, false);
|
|
_notify_new_gyro_raw_sample(_gyro_instance, _accum.gyro);
|
|
|
|
_accum.accel.zero();
|
|
_accum.gyro.zero();
|
|
_accum.count = 0;
|
|
}
|
|
}
|
|
|
|
if (clipped) {
|
|
increment_clip_count(_accel_instance);
|
|
}
|
|
|
|
if (ret) {
|
|
float temp = (static_cast<float>(tsum)/n_samples)*temp_sensitivity + temp_zero;
|
|
_temp_filtered = _temp_filter.apply(temp);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
#define MAX_NODATA_TIME 5000 // 5ms
|
|
|
|
void AP_InertialSensor_Revo::_read_fifo()
|
|
{
|
|
uint32_t now=Scheduler::_micros();
|
|
|
|
#ifdef MPU_DEBUG_LOG
|
|
uint16_t old_log_ptr=mpu_log_ptr;
|
|
mpu_log_item & p = mpu_log[mpu_log_ptr++];
|
|
if(mpu_log_ptr>=MPU_LOG_SIZE) mpu_log_ptr=0;
|
|
p.t=now;
|
|
p.read_ptr=read_ptr;
|
|
p.write_ptr=write_ptr;
|
|
#endif
|
|
|
|
if(read_ptr == write_ptr) {
|
|
if(_data_ready()){ // no interrupt for some reason?
|
|
_isr();
|
|
}
|
|
if(now - last_sample > MAX_NODATA_TIME) { // something went wrong - data stream stopped
|
|
_start(); // try to restart MPU
|
|
last_sample=now;
|
|
#ifdef MPU_DEBUG
|
|
REVOMINIScheduler::MPU_restarted(); // count them
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
last_sample=now;
|
|
|
|
uint16_t count = 0;
|
|
#ifdef MPU_DEBUG
|
|
uint32_t dt = 0;
|
|
uint32_t t = now;
|
|
#endif
|
|
|
|
while(read_ptr != write_ptr) { // there are samples
|
|
// uint64_t time = _fifo_buffer[read_ptr++].time; // we can get exact time
|
|
uint8_t *rx = _fifo_buffer + MPU_SAMPLE_SIZE * read_ptr++; // calculate address and move to next item
|
|
if(read_ptr >= MPU_FIFO_BUFFER_LEN) { // move write pointer
|
|
read_ptr=0; // ring
|
|
}
|
|
|
|
|
|
if (_fast_sampling) {
|
|
if (!_accumulate_fast_sampling(rx, 1)) {
|
|
// debug("stop at %u of %u", n_samples, bytes_read/MPU_SAMPLE_SIZE);
|
|
// break; don't break before all items in queue will be readed
|
|
continue;
|
|
}
|
|
} else {
|
|
if (!_accumulate(rx, 1)) {
|
|
// break; don't break before all items in queue will be readed
|
|
continue;
|
|
}
|
|
}
|
|
count++;
|
|
}
|
|
now = Scheduler::_micros();
|
|
last_sample=now;
|
|
|
|
#ifdef MPU_DEBUG_LOG
|
|
if(count==1) {
|
|
mpu_log_ptr = old_log_ptr;
|
|
}
|
|
#endif
|
|
#ifdef MPU_DEBUG
|
|
dt= now - t;// time from entry
|
|
REVOMINIScheduler::MPU_stats(count,dt);
|
|
#endif
|
|
|
|
// only wait_for_sample() uses delay_microseconds_boost() so
|
|
// resume main thread then it waits for this sample - sample already got
|
|
Scheduler::resume_boost();
|
|
}
|
|
|
|
/*
|
|
fetch temperature in order to detect FIFO sync errors
|
|
*/
|
|
bool AP_InertialSensor_Revo::_check_raw_temp(int16_t t2)
|
|
{
|
|
if (abs(t2 - _raw_temp) < 400) {
|
|
// cached copy OK
|
|
return true;
|
|
}
|
|
uint8_t trx[2];
|
|
if (_block_read(MPUREG_TEMP_OUT_H, trx, 2)) {
|
|
_raw_temp = int16_val(trx, 0);
|
|
}
|
|
return (abs(t2 - _raw_temp) < 400);
|
|
}
|
|
|
|
bool AP_InertialSensor_Revo::_block_read(uint8_t reg, uint8_t *buf,
|
|
uint32_t size)
|
|
{
|
|
return _dev->read_registers(reg, buf, size);
|
|
}
|
|
|
|
uint8_t AP_InertialSensor_Revo::_register_read(uint8_t reg)
|
|
{
|
|
uint8_t val = 0;
|
|
_dev->read_registers(reg, &val, 1);
|
|
return val;
|
|
}
|
|
|
|
void AP_InertialSensor_Revo::_register_write(uint8_t reg, uint8_t val, bool checked)
|
|
{
|
|
_dev->write_register(reg, val, checked);
|
|
}
|
|
|
|
/*
|
|
set the DLPF filter frequency. Assumes caller has taken semaphore
|
|
*/
|
|
void AP_InertialSensor_Revo::_set_filter_register(void)
|
|
{
|
|
uint8_t config;
|
|
|
|
#if INVENSENSE_EXT_SYNC_ENABLE
|
|
// add in EXT_SYNC bit if enabled
|
|
config = (MPUREG_CONFIG_EXT_SYNC_AZ << MPUREG_CONFIG_EXT_SYNC_SHIFT);
|
|
#else
|
|
config = 0;
|
|
#endif
|
|
|
|
if (enable_fast_sampling(_accel_instance)) {
|
|
_fast_sampling = (_mpu_type != Invensense_MPU6000 && _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI);
|
|
if (_fast_sampling) {
|
|
#ifdef DEBUG_BUILD
|
|
printf("MPU[%u]: enabled fast sampling\n", _accel_instance);
|
|
#endif
|
|
// for logging purposes set the oversamping rate
|
|
_set_accel_oversampling(_accel_instance, MPU_FIFO_DOWNSAMPLE_COUNT/2);
|
|
_set_gyro_oversampling(_gyro_instance, MPU_FIFO_DOWNSAMPLE_COUNT);
|
|
|
|
/* set divider for internal sample rate to 0x1F when fast
|
|
sampling enabled. This reduces the impact of the slave
|
|
sensor on the sample rate. It ends up with around 75Hz
|
|
slave rate, and reduces the impact on the gyro and accel
|
|
sample rate, ending up with around 7760Hz gyro rate and
|
|
3880Hz accel rate
|
|
*/
|
|
_register_write(MPUREG_I2C_SLV4_CTRL, 0x1F);
|
|
}
|
|
}
|
|
|
|
if (_fast_sampling) {
|
|
// this gives us 8kHz sampling on gyros and 4kHz on accels
|
|
config |= BITS_DLPF_CFG_256HZ_NOLPF2;
|
|
} else {
|
|
// limit to 1kHz if not on SPI
|
|
config |= BITS_DLPF_CFG_188HZ;
|
|
}
|
|
|
|
config |= MPUREG_CONFIG_FIFO_MODE_STOP;
|
|
_register_write(MPUREG_CONFIG, config, true);
|
|
|
|
if (_mpu_type != Invensense_MPU6000) {
|
|
if (_fast_sampling) {
|
|
// setup for 4kHz accels
|
|
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_FCHOICE_B, true);
|
|
} else {
|
|
_register_write(ICMREG_ACCEL_CONFIG2, ICM_ACC_DLPF_CFG_218HZ, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
check whoami for sensor type
|
|
*/
|
|
bool AP_InertialSensor_Revo::_check_whoami(void)
|
|
{
|
|
uint8_t whoami = _register_read(MPUREG_WHOAMI);
|
|
switch (whoami) {
|
|
case MPU_WHOAMI_6000:
|
|
_mpu_type = Invensense_MPU6000;
|
|
return true;
|
|
case MPU_WHOAMI_6500:
|
|
_mpu_type = Invensense_MPU6500;
|
|
return true;
|
|
case MPU_WHOAMI_MPU9250:
|
|
case MPU_WHOAMI_MPU9255:
|
|
_mpu_type = Invensense_MPU9250;
|
|
return true;
|
|
case MPU_WHOAMI_20608:
|
|
_mpu_type = Invensense_ICM20608;
|
|
return true;
|
|
case MPU_WHOAMI_20602:
|
|
_mpu_type = Invensense_ICM20602;
|
|
return true;
|
|
}
|
|
// not a value WHOAMI result
|
|
return false;
|
|
}
|
|
|
|
|
|
bool AP_InertialSensor_Revo::_hardware_init(void)
|
|
{
|
|
if (!_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
|
|
return false;
|
|
}
|
|
|
|
// setup for register checking
|
|
_dev->setup_checked_registers(7, 20);
|
|
|
|
// initially run the bus at low speed
|
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
|
|
|
if (!_check_whoami()) {
|
|
_dev->get_semaphore()->give();
|
|
return false;
|
|
}
|
|
|
|
// Chip reset
|
|
uint8_t tries;
|
|
for (tries = 0; tries < 5; tries++) {
|
|
_last_stat_user_ctrl = _register_read(MPUREG_USER_CTRL);
|
|
|
|
/* First disable the master I2C to avoid hanging the slaves on the
|
|
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus
|
|
* is used */
|
|
if (_last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN) {
|
|
_last_stat_user_ctrl &= ~BIT_USER_CTRL_I2C_MST_EN;
|
|
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl);
|
|
hal.scheduler->delay(10);
|
|
}
|
|
|
|
/* reset device */
|
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
|
|
hal.scheduler->delay(100);
|
|
|
|
/* bus-dependent initialization */
|
|
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
|
|
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be
|
|
* done just after the device is reset) */
|
|
_last_stat_user_ctrl |= BIT_USER_CTRL_I2C_IF_DIS;
|
|
_register_write(MPUREG_USER_CTRL, _last_stat_user_ctrl);
|
|
}
|
|
|
|
/* bus-dependent initialization */
|
|
if ((_dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C) && (_mpu_type == Invensense_MPU9250)) {
|
|
/* Enable I2C bypass to access internal AK8963 */
|
|
_register_write(MPUREG_INT_PIN_CFG, BIT_BYPASS_EN);
|
|
}
|
|
|
|
// Wake up device and select GyroZ clock. Note that the
|
|
// Invensense starts up in sleep mode, and it can take some time
|
|
// for it to come out of sleep
|
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
|
|
hal.scheduler->delay(5);
|
|
|
|
// check it has woken up
|
|
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
|
|
break;
|
|
}
|
|
|
|
hal.scheduler->delay(10);
|
|
if (_data_ready()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
|
|
_dev->get_semaphore()->give();
|
|
|
|
if (tries == 5) {
|
|
#ifdef DEBUG_BUILD
|
|
printf("Failed to boot Invensense 5 times\n");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (_mpu_type == Invensense_ICM20608 ||
|
|
_mpu_type == Invensense_ICM20602) {
|
|
// this avoids a sensor bug, see description above
|
|
_register_write(MPUREG_ICM_UNDOC1, MPUREG_ICM_UNDOC1_VALUE, true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
#endif // BOARD_REVO
|