ardupilot/libraries/SITL/SIM_Multicopter.cpp
Peter Barker 4db011f530 SITL: add SIM_SHOVE_* options to shove the simulated vehicle
The parameter values are time in milliseconds and body-frame
acceleration in m/s/s

So to test throw mode:
 mode throw
 param set SIM_SHOVE_Z -30
 arm throttle
 param set SIM_SHOVE_TIME 500
2019-03-12 11:09:37 +11:00

80 lines
2.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
multicopter simulator class
*/
#include "SIM_Multicopter.h"
#include <AP_Motors/AP_Motors.h>
#include <stdio.h>
using namespace SITL;
MultiCopter::MultiCopter(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str),
frame(nullptr)
{
mass = 1.5f;
frame = Frame::find_frame(frame_str);
if (frame == nullptr) {
printf("Frame '%s' not found", frame_str);
exit(1);
}
// initial mass is passed through to Frame for it to calculate a
// hover thrust requirement.
if (strstr(frame_str, "-fast")) {
frame->init(gross_mass(), 0.5, 85, 4*radians(360));
} else {
frame->init(gross_mass(), 0.51, 15, 4*radians(360));
}
frame_height = 0.1;
ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT;
}
// calculate rotational and linear accelerations
void MultiCopter::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
{
frame->calculate_forces(*this, input, rot_accel, body_accel);
add_shove_forces(rot_accel, body_accel);
}
/*
update the multicopter simulation by one time step
*/
void MultiCopter::update(const struct sitl_input &input)
{
// get wind vector setup
update_wind(input);
Vector3f rot_accel;
calculate_forces(input, rot_accel, accel_body);
// estimate voltage and current
frame->current_and_voltage(input, battery_voltage, battery_current);
update_dynamics(rot_accel);
update_external_payload(input);
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
}