ardupilot/ArduSub/mode.cpp

295 lines
10 KiB
C++

#include "Sub.h"
/*
constructor for Mode object
*/
Mode::Mode(void) :
g(sub.g),
g2(sub.g2),
inertial_nav(sub.inertial_nav),
ahrs(sub.ahrs),
motors(sub.motors),
channel_roll(sub.channel_roll),
channel_pitch(sub.channel_pitch),
channel_throttle(sub.channel_throttle),
channel_yaw(sub.channel_yaw),
channel_forward(sub.channel_forward),
channel_lateral(sub.channel_lateral),
position_control(&sub.pos_control),
attitude_control(&sub.attitude_control),
G_Dt(sub.G_Dt)
{ };
// return the static controller object corresponding to supplied mode
Mode *Sub::mode_from_mode_num(const Mode::Number mode)
{
Mode *ret = nullptr;
switch (mode) {
case Mode::Number::MANUAL:
ret = &mode_manual;
break;
case Mode::Number::STABILIZE:
ret = &mode_stabilize;
break;
case Mode::Number::ACRO:
ret = &mode_acro;
break;
case Mode::Number::ALT_HOLD:
ret = &mode_althold;
break;
case Mode::Number::POSHOLD:
ret = &mode_poshold;
break;
case Mode::Number::AUTO:
ret = &mode_auto;
break;
case Mode::Number::GUIDED:
ret = &mode_guided;
break;
case Mode::Number::CIRCLE:
ret = &mode_circle;
break;
case Mode::Number::SURFACE:
ret = &mode_surface;
break;
case Mode::Number::MOTOR_DETECT:
ret = &mode_motordetect;
break;
default:
break;
}
return ret;
}
// set_mode - change flight mode and perform any necessary initialisation
// optional force parameter used to force the flight mode change (used only first time mode is set)
// returns true if mode was successfully set
// Some modes can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
bool Sub::set_mode(Mode::Number mode, ModeReason reason)
{
// return immediately if we are already in the desired mode
if (mode == control_mode) {
control_mode_reason = reason;
return true;
}
Mode *new_flightmode = mode_from_mode_num((Mode::Number)mode);
if (new_flightmode == nullptr) {
notify_no_such_mode((uint8_t)mode);
return false;
}
if (new_flightmode->requires_GPS() &&
!sub.position_ok()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s requires position", new_flightmode->name());
LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
// check for valid altitude if old mode did not require it but new one does
// we only want to stop changing modes if it could make things worse
if (!sub.control_check_barometer() && // maybe use ekf_alt_ok() instead?
flightmode->has_manual_throttle() &&
!new_flightmode->has_manual_throttle()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s need alt estimate", new_flightmode->name());
LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
if (!new_flightmode->init(false)) {
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed %s", new_flightmode->name());
LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
return false;
}
// perform any cleanup required by previous flight mode
exit_mode(flightmode, new_flightmode);
// store previous flight mode (only used by tradeheli's autorotation)
prev_control_mode = control_mode;
// update flight mode
flightmode = new_flightmode;
control_mode = mode;
control_mode_reason = reason;
#if HAL_LOGGING_ENABLED
logger.Write_Mode((uint8_t)control_mode, reason);
#endif
gcs().send_message(MSG_HEARTBEAT);
// update notify object
notify_flight_mode();
// return success
return true;
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
void Sub::exit_mode(Mode::Number old_control_mode, Mode::Number new_control_mode)
{
// stop mission when we leave auto mode
if (old_control_mode == Mode::Number::AUTO) {
if (mission.state() == AP_Mission::MISSION_RUNNING) {
mission.stop();
}
#if HAL_MOUNT_ENABLED
camera_mount.set_mode_to_default();
#endif // HAL_MOUNT_ENABLED
}
}
bool Sub::set_mode(const uint8_t new_mode, const ModeReason reason)
{
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number");
return sub.set_mode(static_cast<Mode::Number>(new_mode), reason);
}
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
// called at 100hz or more
void Sub::update_flight_mode()
{
flightmode->run();
}
// exit_mode - high level call to organise cleanup as a flight mode is exited
void Sub::exit_mode(Mode *&old_flightmode, Mode *&new_flightmode){
#if HAL_MOUNT_ENABLED
camera_mount.set_mode_to_default();
#endif // HAL_MOUNT_ENABLED
}
// notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device
void Sub::notify_flight_mode()
{
AP_Notify::flags.autopilot_mode = flightmode->is_autopilot();
AP_Notify::flags.flight_mode = (uint8_t)control_mode;
notify.set_flight_mode_str(flightmode->name4());
}
// get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates
// returns desired angle rates in centi-degrees-per-second
void Mode::get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out)
{
float rate_limit;
Vector3f rate_ef_level, rate_bf_level, rate_bf_request;
// apply circular limit to pitch and roll inputs
float total_in = norm(pitch_in, roll_in);
if (total_in > ROLL_PITCH_INPUT_MAX) {
float ratio = (float)ROLL_PITCH_INPUT_MAX / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// calculate roll, pitch rate requests
if (g.acro_expo <= 0) {
rate_bf_request.x = roll_in * g.acro_rp_p;
rate_bf_request.y = pitch_in * g.acro_rp_p;
} else {
// expo variables
float rp_in, rp_in3, rp_out;
// range check expo
if (g.acro_expo > 1.0f) {
g.acro_expo.set(1.0f);
}
// roll expo
rp_in = float(roll_in)/ROLL_PITCH_INPUT_MAX;
rp_in3 = rp_in*rp_in*rp_in;
rp_out = (g.acro_expo * rp_in3) + ((1 - g.acro_expo) * rp_in);
rate_bf_request.x = ROLL_PITCH_INPUT_MAX * rp_out * g.acro_rp_p;
// pitch expo
rp_in = float(pitch_in)/ROLL_PITCH_INPUT_MAX;
rp_in3 = rp_in*rp_in*rp_in;
rp_out = (g.acro_expo * rp_in3) + ((1 - g.acro_expo) * rp_in);
rate_bf_request.y = ROLL_PITCH_INPUT_MAX * rp_out * g.acro_rp_p;
}
// calculate yaw rate request
rate_bf_request.z = yaw_in * g.acro_yaw_p;
// calculate earth frame rate corrections to pull the vehicle back to level while in ACRO mode
if (g.acro_trainer != ACRO_TRAINER_DISABLED) {
// Calculate trainer mode earth frame rate command for roll
int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor);
rate_ef_level.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor);
rate_ef_level.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;
// Calculate trainer mode earth frame rate command for yaw
rate_ef_level.z = 0;
// Calculate angle limiting earth frame rate commands
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
if (roll_angle > sub.aparm.angle_max) {
rate_ef_level.x -= g.acro_balance_roll*(roll_angle-sub.aparm.angle_max);
} else if (roll_angle < -sub.aparm.angle_max) {
rate_ef_level.x -= g.acro_balance_roll*(roll_angle+sub.aparm.angle_max);
}
if (pitch_angle > sub.aparm.angle_max) {
rate_ef_level.y -= g.acro_balance_pitch*(pitch_angle-sub.aparm.angle_max);
} else if (pitch_angle < -sub.aparm.angle_max) {
rate_ef_level.y -= g.acro_balance_pitch*(pitch_angle+sub.aparm.angle_max);
}
}
// convert earth-frame level rates to body-frame level rates
attitude_control->euler_rate_to_ang_vel(attitude_control->get_att_target_euler_cd()*radians(0.01f), rate_ef_level, rate_bf_level);
// combine earth frame rate corrections with rate requests
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
rate_bf_request.x += rate_bf_level.x;
rate_bf_request.y += rate_bf_level.y;
rate_bf_request.z += rate_bf_level.z;
} else {
float acro_level_mix = constrain_float(1-MAX(MAX(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0, 0, 1)*ahrs.cos_pitch();
// Scale leveling rates by stick input
rate_bf_level = rate_bf_level*acro_level_mix;
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request.x)-fabsf(rate_bf_level.x));
rate_bf_request.x += rate_bf_level.x;
rate_bf_request.x = constrain_float(rate_bf_request.x, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request.y)-fabsf(rate_bf_level.y));
rate_bf_request.y += rate_bf_level.y;
rate_bf_request.y = constrain_float(rate_bf_request.y, -rate_limit, rate_limit);
// Calculate rate limit to prevent change of rate through inverted
rate_limit = fabsf(fabsf(rate_bf_request.z)-fabsf(rate_bf_level.z));
rate_bf_request.z += rate_bf_level.z;
rate_bf_request.z = constrain_float(rate_bf_request.z, -rate_limit, rate_limit);
}
}
// hand back rate request
roll_out = rate_bf_request.x;
pitch_out = rate_bf_request.y;
yaw_out = rate_bf_request.z;
}
bool Mode::set_mode(Mode::Number mode, ModeReason reason)
{
return sub.set_mode(mode, reason);
}
GCS_Sub &Mode::gcs()
{
return sub.gcs();
}