ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_PX4.cpp

144 lines
3.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_InertialSensor_PX4.h"
const extern AP_HAL::HAL& hal;
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate )
{
switch (sample_rate) {
case RATE_50HZ:
_sample_divider = 4;
break;
case RATE_100HZ:
_sample_divider = 2;
break;
case RATE_200HZ:
default:
_sample_divider = 1;
break;
}
// init accelerometers
_accel_fd = open(ACCEL_DEVICE_PATH, O_RDONLY);
if (_accel_fd < 0) {
hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH);
}
_gyro_fd = open(GYRO_DEVICE_PATH, O_RDONLY);
if (_gyro_fd < 0) {
hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH);
}
/*
* set the accel and gyro sampling rate. We always set these to
* 200 then average in this driver
*/
ioctl(_accel_fd, ACCELIOCSSAMPLERATE, 200);
ioctl(_accel_fd, SENSORIOCSPOLLRATE, 200);
ioctl(_gyro_fd, GYROIOCSSAMPLERATE, 200);
ioctl(_gyro_fd, SENSORIOCSPOLLRATE, 200);
// ask for a 10 sample buffer. The mpu6000 PX4 driver doesn't
// support this yet, but when it does we want to use it
ioctl(_accel_fd, SENSORIOCSQUEUEDEPTH, 10);
ioctl(_gyro_fd, SENSORIOCSQUEUEDEPTH, 10);
return AP_PRODUCT_ID_PX4;
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_PX4::update(void)
{
while (num_samples_available() == 0) {
hal.scheduler->delay(1);
}
uint32_t now = hal.scheduler->micros();
// the current mpu6000 PX4 driver does not buffer samples, so
// using the sample count times 5ms would produce a bad delta time
// if we missed one. For now we need to use the clock to get the
// delta time
_delta_time = (now - _last_update_usec) * 1.0e-6f;
_last_update_usec = now;
Vector3f accel_scale = _accel_scale.get();
_accel = _accel_sum / _accel_sum_count;
_accel.rotate(_board_orientation);
_accel.x *= accel_scale.x;
_accel.y *= accel_scale.y;
_accel.z *= accel_scale.z;
_accel -= _accel_offset;
_gyro = _gyro_sum / _gyro_sum_count;
_gyro.rotate(_board_orientation);
_gyro -= _gyro_offset;
_accel_sum.zero();
_accel_sum_count = 0;
_gyro_sum.zero();
_gyro_sum_count = 0;
return true;
}
bool AP_InertialSensor_PX4::new_data_available(void)
{
return num_samples_available() > 0;
}
float AP_InertialSensor_PX4::temperature(void)
{
return 0.0;
}
float AP_InertialSensor_PX4::get_delta_time(void)
{
return _delta_time;
}
uint32_t AP_InertialSensor_PX4::get_last_sample_time_micros(void)
{
return _last_update_usec;
}
float AP_InertialSensor_PX4::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
uint16_t AP_InertialSensor_PX4::num_samples_available(void)
{
struct accel_report accel_report;
struct gyro_report gyro_report;
if (::read(_accel_fd, &accel_report, sizeof(accel_report)) == sizeof(accel_report)) {
_accel_sum += Vector3f(accel_report.x, accel_report.y, accel_report.z);
_accel_sum_count++;
}
if (::read(_gyro_fd, &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report)) {
_gyro_sum += Vector3f(gyro_report.x, gyro_report.y, gyro_report.z);
_gyro_sum_count++;
}
return min(_accel_sum_count, _gyro_sum_count) / _sample_divider;
}
#endif // CONFIG_HAL_BOARD