mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
2696e160e6
Separate correction speeds for pilot input vs altitude-above-ground errors to allow slower correction to sonar signals. Change SONAR_GAIN parameter to be altitude error -> desired speed. This means it should be set 10x larger than before. Replace hard-coded sonar cut-off percentage of 70% with SONAR_RELIABLE_DISTANCE_PCT. Reduce sonar cut-off percentage to 60%. Add desired sonar altitude to dataflash log's CTUN message.
1442 lines
53 KiB
Plaintext
1442 lines
53 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
|
|
// returns desired angle in centi-degrees
|
|
static void get_pilot_desired_lean_angles(int16_t roll_in, int16_t pitch_in, int16_t &roll_out, int16_t &pitch_out)
|
|
{
|
|
static float _scaler = 1.0;
|
|
static int16_t _angle_max = 0;
|
|
|
|
// return immediately if no scaling required
|
|
if (g.angle_max == ROLL_PITCH_INPUT_MAX) {
|
|
roll_out = roll_in;
|
|
pitch_out = pitch_in;
|
|
return;
|
|
}
|
|
|
|
// check if angle_max has been updated and redo scaler
|
|
if (g.angle_max != _angle_max) {
|
|
_angle_max = g.angle_max;
|
|
_scaler = (float)g.angle_max/(float)ROLL_PITCH_INPUT_MAX;
|
|
}
|
|
|
|
// convert pilot input to lean angle
|
|
roll_out = roll_in * _scaler;
|
|
pitch_out = pitch_in * _scaler;
|
|
}
|
|
|
|
static void
|
|
get_stabilize_roll(int32_t target_angle)
|
|
{
|
|
// angle error
|
|
target_angle = wrap_180_cd(target_angle - ahrs.roll_sensor);
|
|
|
|
// limit the error we're feeding to the PID
|
|
target_angle = constrain_int32(target_angle, -g.angle_max, g.angle_max);
|
|
|
|
// convert to desired rate
|
|
int32_t target_rate = g.pi_stabilize_roll.kP() * target_angle;
|
|
|
|
// set targets for rate controller
|
|
set_roll_rate_target(target_rate, EARTH_FRAME);
|
|
}
|
|
|
|
static void
|
|
get_stabilize_pitch(int32_t target_angle)
|
|
{
|
|
// angle error
|
|
target_angle = wrap_180_cd(target_angle - ahrs.pitch_sensor);
|
|
|
|
// limit the error we're feeding to the PID
|
|
target_angle = constrain_int32(target_angle, -g.angle_max, g.angle_max);
|
|
|
|
// convert to desired rate
|
|
int32_t target_rate = g.pi_stabilize_pitch.kP() * target_angle;
|
|
|
|
// set targets for rate controller
|
|
set_pitch_rate_target(target_rate, EARTH_FRAME);
|
|
}
|
|
|
|
static void
|
|
get_stabilize_yaw(int32_t target_angle)
|
|
{
|
|
int32_t target_rate;
|
|
int32_t angle_error;
|
|
int32_t output = 0;
|
|
|
|
// angle error
|
|
angle_error = wrap_180_cd(target_angle - ahrs.yaw_sensor);
|
|
|
|
// limit the error we're feeding to the PID
|
|
angle_error = constrain_int32(angle_error, -4500, 4500);
|
|
|
|
// convert angle error to desired Rate:
|
|
target_rate = g.pi_stabilize_yaw.kP() * angle_error;
|
|
|
|
// do not use rate controllers for helicotpers with external gyros
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
if(motors.ext_gyro_enabled) {
|
|
g.rc_4.servo_out = constrain_int32(target_rate, -4500, 4500);
|
|
}
|
|
#endif
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID logging is on and we are tuning the yaw
|
|
if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_STABILIZE_YAW_KP ) {
|
|
pid_log_counter++;
|
|
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_STABILIZE_YAW_KP, angle_error, target_rate, 0, 0, output, tuning_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// set targets for rate controller
|
|
set_yaw_rate_target(target_rate, EARTH_FRAME);
|
|
}
|
|
|
|
static void
|
|
get_acro_roll(int32_t target_rate)
|
|
{
|
|
target_rate = target_rate * g.acro_rp_p;
|
|
|
|
// set targets for rate controller
|
|
set_roll_rate_target(target_rate, BODY_FRAME);
|
|
}
|
|
|
|
static void
|
|
get_acro_pitch(int32_t target_rate)
|
|
{
|
|
target_rate = target_rate * g.acro_rp_p;
|
|
|
|
// set targets for rate controller
|
|
set_pitch_rate_target(target_rate, BODY_FRAME);
|
|
}
|
|
|
|
static void
|
|
get_acro_yaw(int32_t target_rate)
|
|
{
|
|
target_rate = target_rate * g.acro_yaw_p;
|
|
|
|
// set targets for rate controller
|
|
set_yaw_rate_target(target_rate, BODY_FRAME);
|
|
}
|
|
|
|
// get_acro_level_rates - calculate earth frame rate corrections to pull the copter back to level while in ACRO mode
|
|
static void
|
|
get_acro_level_rates()
|
|
{
|
|
// zero earth frame leveling if trainer is disabled
|
|
if (g.acro_trainer == ACRO_TRAINER_DISABLED) {
|
|
set_roll_rate_target(0, BODY_EARTH_FRAME);
|
|
set_pitch_rate_target(0, BODY_EARTH_FRAME);
|
|
set_yaw_rate_target(0, BODY_EARTH_FRAME);
|
|
return;
|
|
}
|
|
|
|
// Calculate trainer mode earth frame rate command for roll
|
|
int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor);
|
|
int32_t target_rate = 0;
|
|
|
|
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
|
|
if (roll_angle > g.angle_max){
|
|
target_rate = g.pi_stabilize_roll.get_p(g.angle_max-roll_angle);
|
|
}else if (roll_angle < -g.angle_max) {
|
|
target_rate = g.pi_stabilize_roll.get_p(-g.angle_max-roll_angle);
|
|
}
|
|
}
|
|
roll_angle = constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE);
|
|
target_rate -= roll_angle * g.acro_balance_roll;
|
|
|
|
// add earth frame targets for roll rate controller
|
|
set_roll_rate_target(target_rate, BODY_EARTH_FRAME);
|
|
|
|
// Calculate trainer mode earth frame rate command for pitch
|
|
int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor);
|
|
target_rate = 0;
|
|
|
|
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
|
|
if (pitch_angle > g.angle_max){
|
|
target_rate = g.pi_stabilize_pitch.get_p(g.angle_max-pitch_angle);
|
|
}else if (pitch_angle < -g.angle_max) {
|
|
target_rate = g.pi_stabilize_pitch.get_p(-g.angle_max-pitch_angle);
|
|
}
|
|
}
|
|
pitch_angle = constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE);
|
|
target_rate -= pitch_angle * g.acro_balance_pitch;
|
|
|
|
// add earth frame targets for pitch rate controller
|
|
set_pitch_rate_target(target_rate, BODY_EARTH_FRAME);
|
|
|
|
// add earth frame targets for yaw rate controller
|
|
set_yaw_rate_target(0, BODY_EARTH_FRAME);
|
|
}
|
|
|
|
// Roll with rate input and stabilized in the body frame
|
|
static void
|
|
get_roll_rate_stabilized_bf(int32_t stick_angle)
|
|
{
|
|
static float angle_error = 0;
|
|
|
|
// convert the input to the desired body frame roll rate
|
|
int32_t rate_request = stick_angle * g.acro_rp_p;
|
|
|
|
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
|
|
rate_request += acro_roll_rate;
|
|
}else{
|
|
// Scale pitch leveling by stick input
|
|
acro_roll_rate = (float)acro_roll_rate*acro_level_mix;
|
|
|
|
// Calculate rate limit to prevent change of rate through inverted
|
|
int32_t rate_limit = labs(labs(rate_request)-labs(acro_roll_rate));
|
|
|
|
rate_request += acro_roll_rate;
|
|
rate_request = constrain_int32(rate_request, -rate_limit, rate_limit);
|
|
}
|
|
|
|
// add automatic correction
|
|
int32_t rate_correction = g.pi_stabilize_roll.get_p(angle_error);
|
|
|
|
// set body frame targets for rate controller
|
|
set_roll_rate_target(rate_request+rate_correction, BODY_FRAME);
|
|
|
|
// Calculate integrated body frame rate error
|
|
angle_error += (rate_request - (omega.x * DEGX100)) * G_Dt;
|
|
|
|
// don't let angle error grow too large
|
|
angle_error = constrain_float(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT);
|
|
|
|
if (!motors.armed() || g.rc_3.servo_out == 0) {
|
|
angle_error = 0;
|
|
}
|
|
}
|
|
|
|
// Pitch with rate input and stabilized in the body frame
|
|
static void
|
|
get_pitch_rate_stabilized_bf(int32_t stick_angle)
|
|
{
|
|
static float angle_error = 0;
|
|
|
|
// convert the input to the desired body frame pitch rate
|
|
int32_t rate_request = stick_angle * g.acro_rp_p;
|
|
|
|
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
|
|
rate_request += acro_pitch_rate;
|
|
}else{
|
|
// Scale pitch leveling by stick input
|
|
acro_pitch_rate = (float)acro_pitch_rate*acro_level_mix;
|
|
|
|
// Calculate rate limit to prevent change of rate through inverted
|
|
int32_t rate_limit = labs(labs(rate_request)-labs(acro_pitch_rate));
|
|
|
|
rate_request += acro_pitch_rate;
|
|
rate_request = constrain_int32(rate_request, -rate_limit, rate_limit);
|
|
}
|
|
|
|
// add automatic correction
|
|
int32_t rate_correction = g.pi_stabilize_pitch.get_p(angle_error);
|
|
|
|
// set body frame targets for rate controller
|
|
set_pitch_rate_target(rate_request+rate_correction, BODY_FRAME);
|
|
|
|
// Calculate integrated body frame rate error
|
|
angle_error += (rate_request - (omega.y * DEGX100)) * G_Dt;
|
|
|
|
// don't let angle error grow too large
|
|
angle_error = constrain_float(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT);
|
|
|
|
if (!motors.armed() || g.rc_3.servo_out == 0) {
|
|
angle_error = 0;
|
|
}
|
|
}
|
|
|
|
// Yaw with rate input and stabilized in the body frame
|
|
static void
|
|
get_yaw_rate_stabilized_bf(int32_t stick_angle)
|
|
{
|
|
static float angle_error = 0;
|
|
|
|
// convert the input to the desired body frame yaw rate
|
|
int32_t rate_request = stick_angle * g.acro_yaw_p;
|
|
|
|
if (g.acro_trainer == ACRO_TRAINER_LIMITED) {
|
|
rate_request += acro_yaw_rate;
|
|
}else{
|
|
// Scale pitch leveling by stick input
|
|
acro_yaw_rate = (float)acro_yaw_rate*acro_level_mix;
|
|
|
|
// Calculate rate limit to prevent change of rate through inverted
|
|
int32_t rate_limit = labs(labs(rate_request)-labs(acro_yaw_rate));
|
|
|
|
rate_request += acro_yaw_rate;
|
|
rate_request = constrain_int32(rate_request, -rate_limit, rate_limit);
|
|
}
|
|
|
|
// add automatic correction
|
|
int32_t rate_correction = g.pi_stabilize_yaw.get_p(angle_error);
|
|
|
|
// set body frame targets for rate controller
|
|
set_yaw_rate_target(rate_request+rate_correction, BODY_FRAME);
|
|
|
|
// Calculate integrated body frame rate error
|
|
angle_error += (rate_request - (omega.z * DEGX100)) * G_Dt;
|
|
|
|
// don't let angle error grow too large
|
|
angle_error = constrain_float(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT);
|
|
|
|
if (!motors.armed() || g.rc_3.servo_out == 0) {
|
|
angle_error = 0;
|
|
}
|
|
}
|
|
|
|
// Roll with rate input and stabilized in the earth frame
|
|
static void
|
|
get_roll_rate_stabilized_ef(int32_t stick_angle)
|
|
{
|
|
int32_t angle_error = 0;
|
|
|
|
// convert the input to the desired roll rate
|
|
int32_t target_rate = stick_angle * g.acro_rp_p - (acro_roll * g.acro_balance_roll);
|
|
|
|
// convert the input to the desired roll rate
|
|
acro_roll += target_rate * G_Dt;
|
|
acro_roll = wrap_180_cd(acro_roll);
|
|
|
|
// ensure that we don't reach gimbal lock
|
|
if (labs(acro_roll) > g.angle_max) {
|
|
acro_roll = constrain_int32(acro_roll, -g.angle_max, g.angle_max);
|
|
angle_error = wrap_180_cd(acro_roll - ahrs.roll_sensor);
|
|
} else {
|
|
// angle error with maximum of +- max_angle_overshoot
|
|
angle_error = wrap_180_cd(acro_roll - ahrs.roll_sensor);
|
|
angle_error = constrain_int32(angle_error, -MAX_ROLL_OVERSHOOT, MAX_ROLL_OVERSHOOT);
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
if (!motors.motor_runup_complete) {
|
|
angle_error = 0;
|
|
}
|
|
#else
|
|
// reset target angle to current angle if motors not spinning
|
|
if (!motors.armed() || g.rc_3.servo_out == 0) {
|
|
angle_error = 0;
|
|
}
|
|
#endif // HELI_FRAME
|
|
|
|
// update acro_roll to be within max_angle_overshoot of our current heading
|
|
acro_roll = wrap_180_cd(angle_error + ahrs.roll_sensor);
|
|
|
|
// set earth frame targets for rate controller
|
|
set_roll_rate_target(g.pi_stabilize_roll.get_p(angle_error) + target_rate, EARTH_FRAME);
|
|
}
|
|
|
|
// Pitch with rate input and stabilized in the earth frame
|
|
static void
|
|
get_pitch_rate_stabilized_ef(int32_t stick_angle)
|
|
{
|
|
int32_t angle_error = 0;
|
|
|
|
// convert the input to the desired pitch rate
|
|
int32_t target_rate = stick_angle * g.acro_rp_p - (acro_pitch * g.acro_balance_pitch);
|
|
|
|
// convert the input to the desired pitch rate
|
|
acro_pitch += target_rate * G_Dt;
|
|
acro_pitch = wrap_180_cd(acro_pitch);
|
|
|
|
// ensure that we don't reach gimbal lock
|
|
if (labs(acro_pitch) > g.angle_max) {
|
|
acro_pitch = constrain_int32(acro_pitch, -g.angle_max, g.angle_max);
|
|
angle_error = wrap_180_cd(acro_pitch - ahrs.pitch_sensor);
|
|
} else {
|
|
// angle error with maximum of +- max_angle_overshoot
|
|
angle_error = wrap_180_cd(acro_pitch - ahrs.pitch_sensor);
|
|
angle_error = constrain_int32(angle_error, -MAX_PITCH_OVERSHOOT, MAX_PITCH_OVERSHOOT);
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
if (!motors.motor_runup_complete) {
|
|
angle_error = 0;
|
|
}
|
|
#else
|
|
// reset target angle to current angle if motors not spinning
|
|
if (!motors.armed() || g.rc_3.servo_out == 0) {
|
|
angle_error = 0;
|
|
}
|
|
#endif // HELI_FRAME
|
|
|
|
// update acro_pitch to be within max_angle_overshoot of our current heading
|
|
acro_pitch = wrap_180_cd(angle_error + ahrs.pitch_sensor);
|
|
|
|
// set earth frame targets for rate controller
|
|
set_pitch_rate_target(g.pi_stabilize_pitch.get_p(angle_error) + target_rate, EARTH_FRAME);
|
|
}
|
|
|
|
// Yaw with rate input and stabilized in the earth frame
|
|
static void
|
|
get_yaw_rate_stabilized_ef(int32_t stick_angle)
|
|
{
|
|
|
|
int32_t angle_error = 0;
|
|
|
|
// convert the input to the desired yaw rate
|
|
int32_t target_rate = stick_angle * g.acro_yaw_p;
|
|
|
|
// convert the input to the desired yaw rate
|
|
nav_yaw += target_rate * G_Dt;
|
|
nav_yaw = wrap_360_cd(nav_yaw);
|
|
|
|
// calculate difference between desired heading and current heading
|
|
angle_error = wrap_180_cd(nav_yaw - ahrs.yaw_sensor);
|
|
|
|
// limit the maximum overshoot
|
|
angle_error = constrain_int32(angle_error, -MAX_YAW_OVERSHOOT, MAX_YAW_OVERSHOOT);
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
if (!motors.motor_runup_complete) {
|
|
angle_error = 0;
|
|
}
|
|
#else
|
|
// reset target angle to current heading if motors not spinning
|
|
if (!motors.armed() || g.rc_3.servo_out == 0) {
|
|
angle_error = 0;
|
|
}
|
|
#endif // HELI_FRAME
|
|
|
|
// update nav_yaw to be within max_angle_overshoot of our current heading
|
|
nav_yaw = wrap_360_cd(angle_error + ahrs.yaw_sensor);
|
|
|
|
// set earth frame targets for rate controller
|
|
set_yaw_rate_target(g.pi_stabilize_yaw.get_p(angle_error)+target_rate, EARTH_FRAME);
|
|
}
|
|
|
|
// set_roll_rate_target - to be called by upper controllers to set roll rate targets in the earth frame
|
|
void set_roll_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
|
|
rate_targets_frame = earth_or_body_frame;
|
|
if( earth_or_body_frame == BODY_FRAME ) {
|
|
roll_rate_target_bf = desired_rate;
|
|
}else{
|
|
roll_rate_target_ef = desired_rate;
|
|
}
|
|
}
|
|
|
|
// set_pitch_rate_target - to be called by upper controllers to set pitch rate targets in the earth frame
|
|
void set_pitch_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
|
|
rate_targets_frame = earth_or_body_frame;
|
|
if( earth_or_body_frame == BODY_FRAME ) {
|
|
pitch_rate_target_bf = desired_rate;
|
|
}else{
|
|
pitch_rate_target_ef = desired_rate;
|
|
}
|
|
}
|
|
|
|
// set_yaw_rate_target - to be called by upper controllers to set yaw rate targets in the earth frame
|
|
void set_yaw_rate_target( int32_t desired_rate, uint8_t earth_or_body_frame ) {
|
|
rate_targets_frame = earth_or_body_frame;
|
|
if( earth_or_body_frame == BODY_FRAME ) {
|
|
yaw_rate_target_bf = desired_rate;
|
|
}else{
|
|
yaw_rate_target_ef = desired_rate;
|
|
}
|
|
}
|
|
|
|
// update_rate_contoller_targets - converts earth frame rates to body frame rates for rate controllers
|
|
void
|
|
update_rate_contoller_targets()
|
|
{
|
|
if( rate_targets_frame == EARTH_FRAME ) {
|
|
// convert earth frame rates to body frame rates
|
|
roll_rate_target_bf = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef;
|
|
pitch_rate_target_bf = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef;
|
|
yaw_rate_target_bf = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef;
|
|
}else if( rate_targets_frame == BODY_EARTH_FRAME ) {
|
|
// add converted earth frame rates to body frame rates
|
|
acro_roll_rate = roll_rate_target_ef - sin_pitch * yaw_rate_target_ef;
|
|
acro_pitch_rate = cos_roll_x * pitch_rate_target_ef + sin_roll * cos_pitch_x * yaw_rate_target_ef;
|
|
acro_yaw_rate = cos_pitch_x * cos_roll_x * yaw_rate_target_ef - sin_roll * pitch_rate_target_ef;
|
|
}
|
|
}
|
|
|
|
// run roll, pitch and yaw rate controllers and send output to motors
|
|
// targets for these controllers comes from stabilize controllers
|
|
void
|
|
run_rate_controllers()
|
|
{
|
|
#if FRAME_CONFIG == HELI_FRAME // helicopters only use rate controllers for yaw and only when not using an external gyro
|
|
if(!motors.ext_gyro_enabled) {
|
|
heli_integrated_swash_controller(roll_rate_target_bf, pitch_rate_target_bf);
|
|
g.rc_4.servo_out = get_heli_rate_yaw(yaw_rate_target_bf);
|
|
}
|
|
#else
|
|
// call rate controllers
|
|
g.rc_1.servo_out = get_rate_roll(roll_rate_target_bf);
|
|
g.rc_2.servo_out = get_rate_pitch(pitch_rate_target_bf);
|
|
g.rc_4.servo_out = get_rate_yaw(yaw_rate_target_bf);
|
|
#endif
|
|
|
|
// run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target)
|
|
if( throttle_accel_controller_active ) {
|
|
set_throttle_out(get_throttle_accel(throttle_accel_target_ef), true);
|
|
}
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// init_rate_controllers - set-up filters for rate controller inputs
|
|
void init_rate_controllers()
|
|
{
|
|
// initalise low pass filters on rate controller inputs
|
|
// 1st parameter is time_step, 2nd parameter is time_constant
|
|
// rate_roll_filter.set_cutoff_frequency(0.01f, 0.1f);
|
|
// rate_pitch_filter.set_cutoff_frequency(0.01f, 0.1f);
|
|
}
|
|
|
|
static void heli_integrated_swash_controller(int32_t target_roll_rate, int32_t target_pitch_rate)
|
|
{
|
|
int32_t roll_p, roll_i, roll_d, roll_ff; // used to capture pid values for logging
|
|
int32_t pitch_p, pitch_i, pitch_d, pitch_ff;
|
|
int32_t current_roll_rate, current_pitch_rate; // this iteration's rate
|
|
int32_t roll_rate_error, pitch_rate_error; // simply target_rate - current_rate
|
|
int32_t roll_output, pitch_output; // output from pid controller
|
|
static bool roll_pid_saturated, pitch_pid_saturated; // tracker from last loop if the PID was saturated
|
|
|
|
current_roll_rate = (omega.x * DEGX100); // get current roll rate
|
|
current_pitch_rate = (omega.y * DEGX100); // get current pitch rate
|
|
|
|
roll_rate_error = target_roll_rate - current_roll_rate;
|
|
pitch_rate_error = target_pitch_rate - current_pitch_rate;
|
|
|
|
roll_p = g.pid_rate_roll.get_p(roll_rate_error);
|
|
pitch_p = g.pid_rate_pitch.get_p(pitch_rate_error);
|
|
|
|
if (roll_pid_saturated){
|
|
roll_i = g.pid_rate_roll.get_integrator(); // Locked Integrator due to PID saturation on previous cycle
|
|
} else {
|
|
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim
|
|
if (target_roll_rate > -50 && target_roll_rate < 50){ // Frozen at high rates
|
|
roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt);
|
|
} else {
|
|
roll_i = g.pid_rate_roll.get_integrator();
|
|
}
|
|
} else {
|
|
roll_i = g.pid_rate_roll.get_leaky_i(roll_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate
|
|
}
|
|
}
|
|
|
|
if (pitch_pid_saturated){
|
|
pitch_i = g.pid_rate_pitch.get_integrator(); // Locked Integrator due to PID saturation on previous cycle
|
|
} else {
|
|
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim
|
|
if (target_pitch_rate > -50 && target_pitch_rate < 50){ // Frozen at high rates
|
|
pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt);
|
|
} else {
|
|
pitch_i = g.pid_rate_pitch.get_integrator();
|
|
}
|
|
} else {
|
|
pitch_i = g.pid_rate_pitch.get_leaky_i(pitch_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); // Flybarless Helis get huge I-terms. I-term controls much of the rate
|
|
}
|
|
}
|
|
|
|
roll_d = g.pid_rate_roll.get_d(target_roll_rate, G_Dt);
|
|
pitch_d = g.pid_rate_pitch.get_d(target_pitch_rate, G_Dt);
|
|
|
|
roll_ff = g.heli_roll_ff * target_roll_rate;
|
|
pitch_ff = g.heli_pitch_ff * target_pitch_rate;
|
|
|
|
// Joly, I think your PC and CC code goes here
|
|
|
|
roll_output = roll_p + roll_i + roll_d + roll_ff;
|
|
pitch_output = pitch_p + pitch_i + pitch_d + pitch_ff;
|
|
|
|
if (labs(roll_output) > 4500){
|
|
roll_output = constrain_int32(roll_output, -4500, 4500); // constrain output
|
|
roll_pid_saturated = true; // freeze integrator next cycle
|
|
} else {
|
|
roll_pid_saturated = false; // unfreeze integrator
|
|
}
|
|
|
|
if (labs(pitch_output) > 4500){
|
|
pitch_output = constrain_int32(pitch_output, -4500, 4500); // constrain output
|
|
pitch_pid_saturated = true; // freeze integrator next cycle
|
|
} else {
|
|
pitch_pid_saturated = false; // unfreeze integrator
|
|
}
|
|
|
|
g.rc_1.servo_out = roll_output;
|
|
g.rc_2.servo_out = pitch_output;
|
|
}
|
|
|
|
static int16_t
|
|
get_heli_rate_yaw(int32_t target_rate)
|
|
{
|
|
int32_t p,i,d,ff; // used to capture pid values for logging
|
|
int32_t current_rate; // this iteration's rate
|
|
int32_t rate_error;
|
|
int32_t output;
|
|
static bool pid_saturated; // tracker from last loop if the PID was saturated
|
|
|
|
current_rate = (omega.z * DEGX100); // get current rate
|
|
|
|
// rate control
|
|
rate_error = target_rate - current_rate;
|
|
|
|
// separately calculate p, i, d values for logging
|
|
p = g.pid_rate_yaw.get_p(rate_error);
|
|
|
|
if (pid_saturated){
|
|
i = g.pid_rate_yaw.get_integrator(); // Locked Integrator due to PID saturation on previous cycle
|
|
} else {
|
|
i = g.pid_rate_yaw.get_i(rate_error, G_Dt);
|
|
}
|
|
|
|
d = g.pid_rate_yaw.get_d(rate_error, G_Dt);
|
|
|
|
ff = g.heli_yaw_ff*target_rate;
|
|
|
|
output = p + i + d + ff;
|
|
|
|
if (labs(output) > 4500){
|
|
output = constrain_int32(output, -4500, 4500); // constrain output
|
|
pid_saturated = true; // freeze integrator next cycle
|
|
} else {
|
|
pid_saturated = false; // unfreeze integrator
|
|
}
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID loggins is on and we are tuning the yaw
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_RATE_KP || g.radio_tuning == CH6_YAW_RATE_KD) ) {
|
|
pid_log_counter++;
|
|
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
return output; // output control
|
|
}
|
|
#endif // HELI_FRAME
|
|
|
|
#if FRAME_CONFIG != HELI_FRAME
|
|
static int16_t
|
|
get_rate_roll(int32_t target_rate)
|
|
{
|
|
int32_t p,i,d; // used to capture pid values for logging
|
|
int32_t current_rate; // this iteration's rate
|
|
int32_t rate_error; // simply target_rate - current_rate
|
|
int32_t output; // output from pid controller
|
|
|
|
// get current rate
|
|
current_rate = (omega.x * DEGX100);
|
|
|
|
// call pid controller
|
|
rate_error = target_rate - current_rate;
|
|
p = g.pid_rate_roll.get_p(rate_error);
|
|
|
|
// get i term
|
|
i = g.pid_rate_roll.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if (!motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
|
|
i = g.pid_rate_roll.get_i(rate_error, G_Dt);
|
|
}
|
|
|
|
d = g.pid_rate_roll.get_d(rate_error, G_Dt);
|
|
output = p + i + d;
|
|
|
|
// constrain output
|
|
output = constrain_int32(output, -5000, 5000);
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_ROLL_PITCH_KP || g.radio_tuning == CH6_RATE_ROLL_PITCH_KI || g.radio_tuning == CH6_RATE_ROLL_PITCH_KD) ) {
|
|
pid_log_counter++; // Note: get_rate_pitch pid logging relies on this function to update pid_log_counter so if you change the line above you must change the equivalent line in get_rate_pitch
|
|
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_RATE_ROLL_PITCH_KP, rate_error, p, i, d, output, tuning_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// output control
|
|
return output;
|
|
}
|
|
|
|
static int16_t
|
|
get_rate_pitch(int32_t target_rate)
|
|
{
|
|
int32_t p,i,d; // used to capture pid values for logging
|
|
int32_t current_rate; // this iteration's rate
|
|
int32_t rate_error; // simply target_rate - current_rate
|
|
int32_t output; // output from pid controller
|
|
|
|
// get current rate
|
|
current_rate = (omega.y * DEGX100);
|
|
|
|
// call pid controller
|
|
rate_error = target_rate - current_rate;
|
|
p = g.pid_rate_pitch.get_p(rate_error);
|
|
|
|
// get i term
|
|
i = g.pid_rate_pitch.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if (!motors.limit.roll_pitch || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
|
|
i = g.pid_rate_pitch.get_i(rate_error, G_Dt);
|
|
}
|
|
|
|
d = g.pid_rate_pitch.get_d(rate_error, G_Dt);
|
|
output = p + i + d;
|
|
|
|
// constrain output
|
|
output = constrain_int32(output, -5000, 5000);
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_RATE_ROLL_PITCH_KP || g.radio_tuning == CH6_RATE_ROLL_PITCH_KI || g.radio_tuning == CH6_RATE_ROLL_PITCH_KD) ) {
|
|
if( pid_log_counter == 0 ) { // relies on get_rate_roll having updated pid_log_counter
|
|
Log_Write_PID(CH6_RATE_ROLL_PITCH_KP+100, rate_error, p, i, d, output, tuning_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// output control
|
|
return output;
|
|
}
|
|
|
|
static int16_t
|
|
get_rate_yaw(int32_t target_rate)
|
|
{
|
|
int32_t p,i,d; // used to capture pid values for logging
|
|
int32_t rate_error;
|
|
int32_t output;
|
|
|
|
// rate control
|
|
rate_error = target_rate - (omega.z * DEGX100);
|
|
|
|
// separately calculate p, i, d values for logging
|
|
p = g.pid_rate_yaw.get_p(rate_error);
|
|
|
|
// get i term
|
|
i = g.pid_rate_yaw.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if (!motors.limit.yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) {
|
|
i = g.pid_rate_yaw.get_i(rate_error, G_Dt);
|
|
}
|
|
|
|
// get d value
|
|
d = g.pid_rate_yaw.get_d(rate_error, G_Dt);
|
|
|
|
output = p+i+d;
|
|
output = constrain_int32(output, -4500, 4500);
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID loggins is on and we are tuning the yaw
|
|
if( g.log_bitmask & MASK_LOG_PID && g.radio_tuning == CH6_YAW_RATE_KP ) {
|
|
pid_log_counter++;
|
|
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// constrain output
|
|
return output;
|
|
}
|
|
#endif // !HELI_FRAME
|
|
|
|
// calculate modified roll/pitch depending upon optical flow calculated position
|
|
static int32_t
|
|
get_of_roll(int32_t input_roll)
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
static float tot_x_cm = 0; // total distance from target
|
|
static uint32_t last_of_roll_update = 0;
|
|
int32_t new_roll = 0;
|
|
int32_t p,i,d;
|
|
|
|
// check if new optflow data available
|
|
if( optflow.last_update != last_of_roll_update) {
|
|
last_of_roll_update = optflow.last_update;
|
|
|
|
// add new distance moved
|
|
tot_x_cm += optflow.x_cm;
|
|
|
|
// only stop roll if caller isn't modifying roll
|
|
if( input_roll == 0 && current_loc.alt < 1500) {
|
|
p = g.pid_optflow_roll.get_p(-tot_x_cm);
|
|
i = g.pid_optflow_roll.get_i(-tot_x_cm,1.0f); // we could use the last update time to calculate the time change
|
|
d = g.pid_optflow_roll.get_d(-tot_x_cm,1.0f);
|
|
new_roll = p+i+d;
|
|
}else{
|
|
g.pid_optflow_roll.reset_I();
|
|
tot_x_cm = 0;
|
|
p = 0; // for logging
|
|
i = 0;
|
|
d = 0;
|
|
}
|
|
// limit amount of change and maximum angle
|
|
of_roll = constrain_int32(new_roll, (of_roll-20), (of_roll+20));
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
|
|
pid_log_counter++; // Note: get_of_pitch pid logging relies on this function updating pid_log_counter so if you change the line above you must change the equivalent line in get_of_pitch
|
|
if( pid_log_counter >= 5 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_OPTFLOW_KP, tot_x_cm, p, i, d, of_roll, tuning_value);
|
|
}
|
|
}
|
|
#endif // LOGGING_ENABLED == ENABLED
|
|
}
|
|
|
|
// limit max angle
|
|
of_roll = constrain_int32(of_roll, -1000, 1000);
|
|
|
|
return input_roll+of_roll;
|
|
#else
|
|
return input_roll;
|
|
#endif
|
|
}
|
|
|
|
static int32_t
|
|
get_of_pitch(int32_t input_pitch)
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
static float tot_y_cm = 0; // total distance from target
|
|
static uint32_t last_of_pitch_update = 0;
|
|
int32_t new_pitch = 0;
|
|
int32_t p,i,d;
|
|
|
|
// check if new optflow data available
|
|
if( optflow.last_update != last_of_pitch_update ) {
|
|
last_of_pitch_update = optflow.last_update;
|
|
|
|
// add new distance moved
|
|
tot_y_cm += optflow.y_cm;
|
|
|
|
// only stop roll if caller isn't modifying pitch
|
|
if( input_pitch == 0 && current_loc.alt < 1500 ) {
|
|
p = g.pid_optflow_pitch.get_p(tot_y_cm);
|
|
i = g.pid_optflow_pitch.get_i(tot_y_cm, 1.0f); // we could use the last update time to calculate the time change
|
|
d = g.pid_optflow_pitch.get_d(tot_y_cm, 1.0f);
|
|
new_pitch = p + i + d;
|
|
}else{
|
|
tot_y_cm = 0;
|
|
g.pid_optflow_pitch.reset_I();
|
|
p = 0; // for logging
|
|
i = 0;
|
|
d = 0;
|
|
}
|
|
|
|
// limit amount of change
|
|
of_pitch = constrain_int32(new_pitch, (of_pitch-20), (of_pitch+20));
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID logging is on and we are tuning the rate P, I or D gains
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_OPTFLOW_KP || g.radio_tuning == CH6_OPTFLOW_KI || g.radio_tuning == CH6_OPTFLOW_KD) ) {
|
|
if( pid_log_counter == 0 ) { // relies on get_of_roll having updated the pid_log_counter
|
|
Log_Write_PID(CH6_OPTFLOW_KP+100, tot_y_cm, p, i, d, of_pitch, tuning_value);
|
|
}
|
|
}
|
|
#endif // LOGGING_ENABLED == ENABLED
|
|
}
|
|
|
|
// limit max angle
|
|
of_pitch = constrain_int32(of_pitch, -1000, 1000);
|
|
|
|
return input_pitch+of_pitch;
|
|
#else
|
|
return input_pitch;
|
|
#endif
|
|
}
|
|
|
|
/*************************************************************
|
|
* yaw controllers
|
|
*************************************************************/
|
|
|
|
// get_look_at_yaw - updates bearing to look at center of circle or do a panorama
|
|
// should be called at 100hz
|
|
static void get_circle_yaw()
|
|
{
|
|
static uint8_t look_at_yaw_counter = 0; // used to reduce update rate to 10hz
|
|
|
|
// if circle radius is zero do panorama
|
|
if( g.circle_radius == 0 ) {
|
|
// slew yaw towards circle angle
|
|
nav_yaw = get_yaw_slew(nav_yaw, ToDeg(circle_angle)*100, AUTO_YAW_SLEW_RATE);
|
|
}else{
|
|
look_at_yaw_counter++;
|
|
if( look_at_yaw_counter >= 10 ) {
|
|
look_at_yaw_counter = 0;
|
|
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP);
|
|
}
|
|
// slew yaw
|
|
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE);
|
|
}
|
|
|
|
// call stabilize yaw controller
|
|
get_stabilize_yaw(nav_yaw);
|
|
}
|
|
|
|
// get_look_at_yaw - updates bearing to location held in look_at_yaw_WP and calls stabilize yaw controller
|
|
// should be called at 100hz
|
|
static void get_look_at_yaw()
|
|
{
|
|
static uint8_t look_at_yaw_counter = 0; // used to reduce update rate to 10hz
|
|
|
|
look_at_yaw_counter++;
|
|
if( look_at_yaw_counter >= 10 ) {
|
|
look_at_yaw_counter = 0;
|
|
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP);
|
|
}
|
|
|
|
// slew yaw and call stabilize controller
|
|
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE);
|
|
get_stabilize_yaw(nav_yaw);
|
|
}
|
|
|
|
static void get_look_ahead_yaw(int16_t pilot_yaw)
|
|
{
|
|
// Commanded Yaw to automatically look ahead.
|
|
if (g_gps->fix && g_gps->ground_speed_cm > YAW_LOOK_AHEAD_MIN_SPEED) {
|
|
nav_yaw = get_yaw_slew(nav_yaw, g_gps->ground_course_cd, AUTO_YAW_SLEW_RATE);
|
|
get_stabilize_yaw(wrap_360_cd(nav_yaw + pilot_yaw)); // Allow pilot to "skid" around corners up to 45 degrees
|
|
}else{
|
|
nav_yaw += pilot_yaw * g.acro_yaw_p * G_Dt;
|
|
nav_yaw = wrap_360_cd(nav_yaw);
|
|
get_stabilize_yaw(nav_yaw);
|
|
}
|
|
}
|
|
|
|
/*************************************************************
|
|
* throttle control
|
|
****************************************************************/
|
|
|
|
// update_throttle_cruise - update throttle cruise if necessary
|
|
static void update_throttle_cruise(int16_t throttle)
|
|
{
|
|
// ensure throttle_avg has been initialised
|
|
if( throttle_avg == 0 ) {
|
|
throttle_avg = g.throttle_cruise;
|
|
}
|
|
// calc average throttle if we are in a level hover
|
|
if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) {
|
|
throttle_avg = throttle_avg * 0.99f + (float)throttle * 0.01f;
|
|
g.throttle_cruise = throttle_avg;
|
|
}
|
|
}
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
|
|
// throttle value should be 0 ~ 1000
|
|
// for traditional helicopters
|
|
static int16_t get_angle_boost(int16_t throttle)
|
|
{
|
|
float angle_boost_factor = cos_pitch_x * cos_roll_x;
|
|
angle_boost_factor = 1.0f - constrain_float(angle_boost_factor, .5f, 1.0f);
|
|
int16_t throttle_above_mid = max(throttle - motors.throttle_mid,0);
|
|
|
|
// to allow logging of angle boost
|
|
angle_boost = throttle_above_mid*angle_boost_factor;
|
|
|
|
return throttle + angle_boost;
|
|
}
|
|
#else // all multicopters
|
|
// get_angle_boost - returns a throttle including compensation for roll/pitch angle
|
|
// throttle value should be 0 ~ 1000
|
|
static int16_t get_angle_boost(int16_t throttle)
|
|
{
|
|
float temp = cos_pitch_x * cos_roll_x;
|
|
int16_t throttle_out;
|
|
|
|
temp = constrain_float(temp, 0.5f, 1.0f);
|
|
|
|
// reduce throttle if we go inverted
|
|
temp = constrain_float(9000-max(labs(ahrs.roll_sensor),labs(ahrs.pitch_sensor)), 0, 3000) / (3000 * temp);
|
|
|
|
// apply scale and constrain throttle
|
|
throttle_out = constrain_float((float)(throttle-g.throttle_min) * temp + g.throttle_min, g.throttle_min, 1000);
|
|
|
|
// to allow logging of angle boost
|
|
angle_boost = throttle_out - throttle;
|
|
|
|
return throttle_out;
|
|
}
|
|
#endif // FRAME_CONFIG == HELI_FRAME
|
|
|
|
// set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors
|
|
// provide 0 to cut motors
|
|
void set_throttle_out( int16_t throttle_out, bool apply_angle_boost )
|
|
{
|
|
if( apply_angle_boost ) {
|
|
g.rc_3.servo_out = get_angle_boost(throttle_out);
|
|
}else{
|
|
g.rc_3.servo_out = throttle_out;
|
|
// clear angle_boost for logging purposes
|
|
angle_boost = 0;
|
|
}
|
|
|
|
// update compass with throttle value
|
|
compass.set_throttle((float)g.rc_3.servo_out/1000.0f);
|
|
}
|
|
|
|
// set_throttle_accel_target - to be called by upper throttle controllers to set desired vertical acceleration in earth frame
|
|
void set_throttle_accel_target( int16_t desired_acceleration )
|
|
{
|
|
throttle_accel_target_ef = desired_acceleration;
|
|
throttle_accel_controller_active = true;
|
|
}
|
|
|
|
// disable_throttle_accel - disables the accel based throttle controller
|
|
// it will be re-enasbled on the next set_throttle_accel_target
|
|
// required when we wish to set motors to zero when pilot inputs zero throttle
|
|
void throttle_accel_deactivate()
|
|
{
|
|
throttle_accel_controller_active = false;
|
|
}
|
|
|
|
// set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared
|
|
static void
|
|
set_throttle_takeoff()
|
|
{
|
|
// set alt target
|
|
if (controller_desired_alt < current_loc.alt) {
|
|
controller_desired_alt = current_loc.alt + 20;
|
|
}
|
|
// clear i term from acceleration controller
|
|
if (g.pid_throttle_accel.get_integrator() < 0) {
|
|
g.pid_throttle_accel.reset_I();
|
|
}
|
|
}
|
|
|
|
// get_throttle_accel - accelerometer based throttle controller
|
|
// returns an actual throttle output (0 ~ 1000) to be sent to the motors
|
|
static int16_t
|
|
get_throttle_accel(int16_t z_target_accel)
|
|
{
|
|
static float z_accel_error = 0; // The acceleration error in cm.
|
|
static uint32_t last_call_ms = 0; // the last time this controller was called
|
|
int32_t p,i,d; // used to capture pid values for logging
|
|
int16_t output;
|
|
float z_accel_meas;
|
|
uint32_t now = millis();
|
|
|
|
// Calculate Earth Frame Z acceleration
|
|
z_accel_meas = -(ahrs.get_accel_ef().z + GRAVITY_MSS) * 100;
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if( now - last_call_ms > 100 ) {
|
|
// Reset Filter
|
|
z_accel_error = 0;
|
|
} else {
|
|
// calculate accel error and Filter with fc = 2 Hz
|
|
z_accel_error = z_accel_error + 0.11164f * (constrain_float(z_target_accel - z_accel_meas, -32000, 32000) - z_accel_error);
|
|
}
|
|
last_call_ms = now;
|
|
|
|
// separately calculate p, i, d values for logging
|
|
p = g.pid_throttle_accel.get_p(z_accel_error);
|
|
|
|
// get i term
|
|
i = g.pid_throttle_accel.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
if ((!motors.limit.throttle_lower && !motors.limit.throttle_upper) || (i>0&&z_accel_error<0) || (i<0&&z_accel_error>0)) {
|
|
i = g.pid_throttle_accel.get_i(z_accel_error, .01f);
|
|
}
|
|
|
|
d = g.pid_throttle_accel.get_d(z_accel_error, .01f);
|
|
|
|
//
|
|
// limit the rate
|
|
output = constrain_float(p+i+d+g.throttle_cruise, g.throttle_min, g.throttle_max);
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID loggins is on and we are tuning the yaw
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THROTTLE_ACCEL_KP || g.radio_tuning == CH6_THROTTLE_ACCEL_KI || g.radio_tuning == CH6_THROTTLE_ACCEL_KD) ) {
|
|
pid_log_counter++;
|
|
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_THROTTLE_ACCEL_KP, z_accel_error, p, i, d, output, tuning_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return output;
|
|
}
|
|
|
|
// get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick
|
|
// used only for manual throttle modes
|
|
// returns throttle output 0 to 1000
|
|
#define THROTTLE_IN_MIDDLE 500 // the throttle mid point
|
|
static int16_t get_pilot_desired_throttle(int16_t throttle_control)
|
|
{
|
|
int16_t throttle_out;
|
|
|
|
// exit immediately in the simple cases
|
|
if( throttle_control == 0 || g.throttle_mid == 500) {
|
|
return throttle_control;
|
|
}
|
|
|
|
// ensure reasonable throttle values
|
|
throttle_control = constrain_int16(throttle_control,0,1000);
|
|
g.throttle_mid = constrain_int16(g.throttle_mid,300,700);
|
|
|
|
// check throttle is above, below or in the deadband
|
|
if (throttle_control < THROTTLE_IN_MIDDLE) {
|
|
// below the deadband
|
|
throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(g.throttle_mid - g.throttle_min))/((float)(500-g.throttle_min));
|
|
}else if(throttle_control > THROTTLE_IN_MIDDLE) {
|
|
// above the deadband
|
|
throttle_out = g.throttle_mid + ((float)(throttle_control-500))*(float)(1000-g.throttle_mid)/500.0f;
|
|
}else{
|
|
// must be in the deadband
|
|
throttle_out = g.throttle_mid;
|
|
}
|
|
|
|
return throttle_out;
|
|
}
|
|
|
|
// get_pilot_desired_climb_rate - transform pilot's throttle input to
|
|
// climb rate in cm/s. we use radio_in instead of control_in to get the full range
|
|
// without any deadzone at the bottom
|
|
#define THROTTLE_IN_DEADBAND 100 // the throttle input channel's deadband in PWM
|
|
#define THROTTLE_IN_DEADBAND_TOP (THROTTLE_IN_MIDDLE+THROTTLE_IN_DEADBAND) // top of the deadband
|
|
#define THROTTLE_IN_DEADBAND_BOTTOM (THROTTLE_IN_MIDDLE-THROTTLE_IN_DEADBAND) // bottom of the deadband
|
|
static int16_t get_pilot_desired_climb_rate(int16_t throttle_control)
|
|
{
|
|
int16_t desired_rate = 0;
|
|
|
|
// throttle failsafe check
|
|
if( ap.failsafe_radio ) {
|
|
return 0;
|
|
}
|
|
|
|
// ensure a reasonable throttle value
|
|
throttle_control = constrain_int16(throttle_control,0,1000);
|
|
|
|
// check throttle is above, below or in the deadband
|
|
if (throttle_control < THROTTLE_IN_DEADBAND_BOTTOM) {
|
|
// below the deadband
|
|
desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_BOTTOM) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND);
|
|
}else if (throttle_control > THROTTLE_IN_DEADBAND_TOP) {
|
|
// above the deadband
|
|
desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-THROTTLE_IN_DEADBAND_TOP) / (THROTTLE_IN_MIDDLE - THROTTLE_IN_DEADBAND);
|
|
}else{
|
|
// must be in the deadband
|
|
desired_rate = 0;
|
|
}
|
|
|
|
// desired climb rate for logging
|
|
desired_climb_rate = desired_rate;
|
|
|
|
return desired_rate;
|
|
}
|
|
|
|
// get_initial_alt_hold - get new target altitude based on current altitude and climb rate
|
|
static int32_t
|
|
get_initial_alt_hold( int32_t alt_cm, int16_t climb_rate_cms)
|
|
{
|
|
int32_t target_alt;
|
|
int32_t linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt.
|
|
int32_t linear_velocity; // the velocity we swap between linear and sqrt.
|
|
|
|
linear_velocity = ALT_HOLD_ACCEL_MAX/g.pi_alt_hold.kP();
|
|
|
|
if (abs(climb_rate_cms) < linear_velocity) {
|
|
target_alt = alt_cm + climb_rate_cms/g.pi_alt_hold.kP();
|
|
} else {
|
|
linear_distance = ALT_HOLD_ACCEL_MAX/(2*g.pi_alt_hold.kP()*g.pi_alt_hold.kP());
|
|
if (climb_rate_cms > 0){
|
|
target_alt = alt_cm + linear_distance + (int32_t)climb_rate_cms*(int32_t)climb_rate_cms/(2*ALT_HOLD_ACCEL_MAX);
|
|
} else {
|
|
target_alt = alt_cm - ( linear_distance + (int32_t)climb_rate_cms*(int32_t)climb_rate_cms/(2*ALT_HOLD_ACCEL_MAX) );
|
|
}
|
|
}
|
|
return constrain_int32(target_alt, alt_cm - ALT_HOLD_INIT_MAX_OVERSHOOT, alt_cm + ALT_HOLD_INIT_MAX_OVERSHOOT);
|
|
}
|
|
|
|
// get_throttle_rate - calculates desired accel required to achieve desired z_target_speed
|
|
// sets accel based throttle controller target
|
|
static void
|
|
get_throttle_rate(float z_target_speed)
|
|
{
|
|
static uint32_t last_call_ms = 0;
|
|
static float z_rate_error = 0; // The velocity error in cm.
|
|
static float z_target_speed_filt = 0; // The filtered requested speed
|
|
float z_target_speed_delta; // The change in requested speed
|
|
int32_t p; // used to capture pid values for logging
|
|
int32_t output; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors
|
|
uint32_t now = millis();
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if( now - last_call_ms > 100 ) {
|
|
// Reset Filter
|
|
z_rate_error = 0;
|
|
z_target_speed_filt = z_target_speed;
|
|
output = 0;
|
|
} else {
|
|
// calculate rate error and filter with cut off frequency of 2 Hz
|
|
z_rate_error = z_rate_error + 0.20085f * ((z_target_speed - climb_rate) - z_rate_error);
|
|
// feed forward acceleration based on change in the filtered desired speed.
|
|
z_target_speed_delta = 0.20085f * (z_target_speed - z_target_speed_filt);
|
|
z_target_speed_filt = z_target_speed_filt + z_target_speed_delta;
|
|
output = z_target_speed_delta * 50.0f; // To-Do: replace 50 with dt
|
|
}
|
|
last_call_ms = now;
|
|
|
|
// calculate p
|
|
p = g.pid_throttle_rate.kP() * z_rate_error;
|
|
|
|
// consolidate and constrain target acceleration
|
|
output += p;
|
|
output = constrain_int32(output, -32000, 32000);
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
// log output if PID loggins is on and we are tuning the yaw
|
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_THROTTLE_RATE_KP || g.radio_tuning == CH6_THROTTLE_RATE_KD) ) {
|
|
pid_log_counter++;
|
|
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (50hz / 10hz) = 5hz
|
|
pid_log_counter = 0;
|
|
Log_Write_PID(CH6_THROTTLE_RATE_KP, z_rate_error, p, 0, 0, output, tuning_value);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// set target for accel based throttle controller
|
|
set_throttle_accel_target(output);
|
|
|
|
// update throttle cruise
|
|
// TO-DO: this may not be correct because g.rc_3.servo_out has not been updated for this iteration
|
|
if( z_target_speed == 0 ) {
|
|
update_throttle_cruise(g.rc_3.servo_out);
|
|
}
|
|
}
|
|
|
|
// get_throttle_althold - hold at the desired altitude in cm
|
|
// updates accel based throttle controller targets
|
|
// Note: max_climb_rate is an optional parameter to allow reuse of this function by landing controller
|
|
static void
|
|
get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate)
|
|
{
|
|
int32_t alt_error;
|
|
float desired_rate;
|
|
int32_t linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt.
|
|
|
|
// calculate altitude error
|
|
alt_error = target_alt - current_loc.alt;
|
|
|
|
// check kP to avoid division by zero
|
|
if( g.pi_alt_hold.kP() != 0 ) {
|
|
linear_distance = ALT_HOLD_ACCEL_MAX/(2*g.pi_alt_hold.kP()*g.pi_alt_hold.kP());
|
|
if( alt_error > 2*linear_distance ) {
|
|
desired_rate = safe_sqrt(2*ALT_HOLD_ACCEL_MAX*(alt_error-linear_distance));
|
|
}else if( alt_error < -2*linear_distance ) {
|
|
desired_rate = -safe_sqrt(2*ALT_HOLD_ACCEL_MAX*(-alt_error-linear_distance));
|
|
}else{
|
|
desired_rate = g.pi_alt_hold.get_p(alt_error);
|
|
}
|
|
}else{
|
|
desired_rate = 0;
|
|
}
|
|
|
|
desired_rate = constrain_float(desired_rate, min_climb_rate, max_climb_rate);
|
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets
|
|
get_throttle_rate(desired_rate);
|
|
|
|
// update altitude error reported to GCS
|
|
altitude_error = alt_error;
|
|
|
|
// TO-DO: enabled PID logging for this controller
|
|
}
|
|
|
|
// get_throttle_althold_with_slew - altitude controller with slew to avoid step changes in altitude target
|
|
// calls normal althold controller which updates accel based throttle controller targets
|
|
static void
|
|
get_throttle_althold_with_slew(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate)
|
|
{
|
|
float alt_change = target_alt-controller_desired_alt;
|
|
// adjust desired alt if motors have not hit their limits
|
|
if ((alt_change<0 && !motors.limit.throttle_lower) || (alt_change>0 && !motors.limit.throttle_upper)) {
|
|
controller_desired_alt += constrain_float(alt_change, min_climb_rate*0.02f, max_climb_rate*0.02f);
|
|
}
|
|
|
|
// do not let target altitude get too far from current altitude
|
|
controller_desired_alt = constrain_float(controller_desired_alt,current_loc.alt-750,current_loc.alt+750);
|
|
|
|
get_throttle_althold(controller_desired_alt, min_climb_rate-250, max_climb_rate+250); // 250 is added to give head room to alt hold controller
|
|
}
|
|
|
|
// get_throttle_rate_stabilized - rate controller with additional 'stabilizer'
|
|
// 'stabilizer' ensure desired rate is being met
|
|
// calls normal throttle rate controller which updates accel based throttle controller targets
|
|
static void
|
|
get_throttle_rate_stabilized(int16_t target_rate)
|
|
{
|
|
// adjust desired alt if motors have not hit their limits
|
|
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
|
|
controller_desired_alt += target_rate * 0.02f;
|
|
}
|
|
|
|
// do not let target altitude get too far from current altitude
|
|
controller_desired_alt = constrain_float(controller_desired_alt,current_loc.alt-750,current_loc.alt+750);
|
|
|
|
#if AC_FENCE == ENABLED
|
|
// do not let target altitude be too close to the fence
|
|
// To-Do: add this to other altitude controllers
|
|
if((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
|
|
float alt_limit = fence.get_safe_alt() * 100.0f;
|
|
if (controller_desired_alt > alt_limit) {
|
|
controller_desired_alt = alt_limit;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// update target altitude for reporting purposes
|
|
set_target_alt_for_reporting(controller_desired_alt);
|
|
|
|
get_throttle_althold(controller_desired_alt, -g.pilot_velocity_z_max-250, g.pilot_velocity_z_max+250); // 250 is added to give head room to alt hold controller
|
|
}
|
|
|
|
// get_throttle_land - high level landing logic
|
|
// sends the desired acceleration in the accel based throttle controller
|
|
// called at 50hz
|
|
static void
|
|
get_throttle_land()
|
|
{
|
|
// if we are above 10m and the sonar does not sense anything perform regular alt hold descent
|
|
if (current_loc.alt >= LAND_START_ALT && !(g.sonar_enabled && sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
|
|
get_throttle_althold_with_slew(LAND_START_ALT, -wp_nav.get_descent_velocity(), -abs(g.land_speed));
|
|
}else{
|
|
get_throttle_rate_stabilized(-abs(g.land_speed));
|
|
|
|
// disarm when the landing detector says we've landed and throttle is at min (or we're in failsafe so we have no pilot thorottle input)
|
|
if( ap.land_complete && (g.rc_3.control_in == 0 || ap.failsafe_radio) ) {
|
|
init_disarm_motors();
|
|
}
|
|
}
|
|
}
|
|
|
|
// reset_land_detector - initialises land detector
|
|
static void reset_land_detector()
|
|
{
|
|
set_land_complete(false);
|
|
land_detector = 0;
|
|
}
|
|
|
|
// update_land_detector - checks if we have landed and updates the ap.land_complete flag
|
|
// returns true if we have landed
|
|
static bool update_land_detector()
|
|
{
|
|
// detect whether we have landed by watching for low climb rate and minimum throttle
|
|
if (abs(climb_rate) < 20 && motors.limit.throttle_lower) {
|
|
if (!ap.land_complete) {
|
|
// run throttle controller if accel based throttle controller is enabled and active (active means it has been given a target)
|
|
if( land_detector < LAND_DETECTOR_TRIGGER) {
|
|
land_detector++;
|
|
}else{
|
|
set_land_complete(true);
|
|
land_detector = 0;
|
|
}
|
|
}
|
|
}else{
|
|
// we've sensed movement up or down so reset land_detector
|
|
land_detector = 0;
|
|
if(ap.land_complete) {
|
|
set_land_complete(false);
|
|
}
|
|
}
|
|
|
|
// return current state of landing
|
|
return ap.land_complete;
|
|
}
|
|
|
|
// get_throttle_surface_tracking - hold copter at the desired distance above the ground
|
|
// updates accel based throttle controller targets
|
|
static void
|
|
get_throttle_surface_tracking(int16_t target_rate)
|
|
{
|
|
static uint32_t last_call_ms = 0;
|
|
float distance_error;
|
|
float velocity_correction;
|
|
|
|
uint32_t now = millis();
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if( now - last_call_ms > 200 ) {
|
|
target_sonar_alt = sonar_alt + controller_desired_alt - current_loc.alt;
|
|
}
|
|
last_call_ms = now;
|
|
|
|
// adjust sonar target alt if motors have not hit their limits
|
|
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
|
|
target_sonar_alt += target_rate * 0.02f;
|
|
}
|
|
|
|
// do not let target altitude get too far from current altitude above ground
|
|
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition
|
|
target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-750,sonar_alt+750);
|
|
|
|
// calc desired velocity correction from target sonar alt vs actual sonar alt
|
|
distance_error = target_sonar_alt-sonar_alt;
|
|
velocity_correction = distance_error * g.sonar_gain;
|
|
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX);
|
|
|
|
// call regular rate stabilize alt hold controller
|
|
get_throttle_rate_stabilized(target_rate + velocity_correction);
|
|
}
|
|
|
|
/*
|
|
* reset all I integrators
|
|
*/
|
|
static void reset_I_all(void)
|
|
{
|
|
reset_rate_I();
|
|
reset_stability_I();
|
|
reset_throttle_I();
|
|
reset_optflow_I();
|
|
|
|
// This is the only place we reset Yaw
|
|
g.pi_stabilize_yaw.reset_I();
|
|
}
|
|
|
|
static void reset_rate_I()
|
|
{
|
|
g.pid_rate_roll.reset_I();
|
|
g.pid_rate_pitch.reset_I();
|
|
g.pid_rate_yaw.reset_I();
|
|
}
|
|
|
|
static void reset_optflow_I(void)
|
|
{
|
|
g.pid_optflow_roll.reset_I();
|
|
g.pid_optflow_pitch.reset_I();
|
|
of_roll = 0;
|
|
of_pitch = 0;
|
|
}
|
|
|
|
static void reset_throttle_I(void)
|
|
{
|
|
// For Altitude Hold
|
|
g.pi_alt_hold.reset_I();
|
|
g.pid_throttle_rate.reset_I();
|
|
g.pid_throttle_accel.reset_I();
|
|
}
|
|
|
|
static void set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle)
|
|
{
|
|
// shift difference between pilot's throttle and hover throttle into accelerometer I
|
|
g.pid_throttle_accel.set_integrator(pilot_throttle-g.throttle_cruise);
|
|
}
|
|
|
|
static void reset_stability_I(void)
|
|
{
|
|
// Used to balance a quad
|
|
// This only needs to be reset during Auto-leveling in flight
|
|
g.pi_stabilize_roll.reset_I();
|
|
g.pi_stabilize_pitch.reset_I();
|
|
}
|