mirror of https://github.com/ArduPilot/ardupilot
836 lines
32 KiB
C++
836 lines
32 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_MotorsMulticopter.h"
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_BattMonitor/AP_BattMonitor.h>
|
|
#include <SRV_Channel/SRV_Channel.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// parameters for the motor class
|
|
const AP_Param::GroupInfo AP_MotorsMulticopter::var_info[] = {
|
|
// 0 was used by TB_RATIO
|
|
// 1,2,3 were used by throttle curve
|
|
// 5 was SPIN_ARMED
|
|
|
|
// @Param: YAW_HEADROOM
|
|
// @DisplayName: Matrix Yaw Min
|
|
// @Description: Yaw control is given at least this pwm in microseconds range
|
|
// @Range: 0 500
|
|
// @Units: PWM
|
|
// @User: Advanced
|
|
AP_GROUPINFO("YAW_HEADROOM", 6, AP_MotorsMulticopter, _yaw_headroom, AP_MOTORS_YAW_HEADROOM_DEFAULT),
|
|
|
|
// 7 was THR_LOW_CMP
|
|
|
|
// @Param: THST_EXPO
|
|
// @DisplayName: Thrust Curve Expo
|
|
// @Description: Motor thrust curve exponent (0.0 for linear to 1.0 for second order curve)
|
|
// @Range: -1.0 1.0
|
|
// @User: Advanced
|
|
AP_GROUPINFO("THST_EXPO", 8, AP_MotorsMulticopter, _thrust_curve_expo, AP_MOTORS_THST_EXPO_DEFAULT),
|
|
|
|
// @Param: SPIN_MAX
|
|
// @DisplayName: Motor Spin maximum
|
|
// @Description: Point at which the thrust saturates expressed as a number from 0 to 1 in the entire output range
|
|
// @Values: 0.9:Low, 0.95:Default, 1.0:High
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SPIN_MAX", 9, AP_MotorsMulticopter, _spin_max, AP_MOTORS_SPIN_MAX_DEFAULT),
|
|
|
|
// @Param: BAT_VOLT_MAX
|
|
// @DisplayName: Battery voltage compensation maximum voltage
|
|
// @Description: Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.2 * cell count, 0 = Disabled
|
|
// @Range: 6 53
|
|
// @Units: V
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BAT_VOLT_MAX", 10, AP_MotorsMulticopter, _batt_voltage_max, AP_MOTORS_BAT_VOLT_MAX_DEFAULT),
|
|
|
|
// @Param: BAT_VOLT_MIN
|
|
// @DisplayName: Battery voltage compensation minimum voltage
|
|
// @Description: Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.3 * cell count, 0 = Disabled
|
|
// @Range: 6 42
|
|
// @Units: V
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BAT_VOLT_MIN", 11, AP_MotorsMulticopter, _batt_voltage_min, AP_MOTORS_BAT_VOLT_MIN_DEFAULT),
|
|
|
|
// @Param: BAT_CURR_MAX
|
|
// @DisplayName: Motor Current Max
|
|
// @Description: Maximum current over which maximum throttle is limited (0 = Disabled)
|
|
// @Range: 0 200
|
|
// @Units: A
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BAT_CURR_MAX", 12, AP_MotorsMulticopter, _batt_current_max, AP_MOTORS_BAT_CURR_MAX_DEFAULT),
|
|
|
|
// 13, 14 were used by THR_MIX_MIN, THR_MIX_MAX
|
|
|
|
// @Param: PWM_TYPE
|
|
// @DisplayName: Output PWM type
|
|
// @Description: This selects the output PWM type, allowing for normal PWM continuous output, OneShot, brushed or DShot motor output
|
|
// @Values: 0:Normal,1:OneShot,2:OneShot125,3:Brushed,4:DShot150,5:DShot300,6:DShot600,7:DShot1200,8:PWMRange
|
|
// @User: Advanced
|
|
// @RebootRequired: True
|
|
AP_GROUPINFO("PWM_TYPE", 15, AP_MotorsMulticopter, _pwm_type, PWM_TYPE_NORMAL),
|
|
|
|
// @Param: PWM_MIN
|
|
// @DisplayName: PWM output minimum
|
|
// @Description: This sets the min PWM output value in microseconds that will ever be output to the motors
|
|
// @Units: PWM
|
|
// @Range: 0 2000
|
|
// @User: Advanced
|
|
AP_GROUPINFO("PWM_MIN", 16, AP_MotorsMulticopter, _pwm_min, 1000),
|
|
|
|
// @Param: PWM_MAX
|
|
// @DisplayName: PWM output maximum
|
|
// @Description: This sets the max PWM value in microseconds that will ever be output to the motors
|
|
// @Units: PWM
|
|
// @Range: 0 2000
|
|
// @User: Advanced
|
|
AP_GROUPINFO("PWM_MAX", 17, AP_MotorsMulticopter, _pwm_max, 2000),
|
|
|
|
// @Param: SPIN_MIN
|
|
// @DisplayName: Motor Spin minimum
|
|
// @Description: Point at which the thrust starts expressed as a number from 0 to 1 in the entire output range. Should be higher than MOT_SPIN_ARM.
|
|
// @Values: 0.0:Low, 0.15:Default, 0.25:High
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SPIN_MIN", 18, AP_MotorsMulticopter, _spin_min, AP_MOTORS_SPIN_MIN_DEFAULT),
|
|
|
|
// @Param: SPIN_ARM
|
|
// @DisplayName: Motor Spin armed
|
|
// @Description: Point at which the motors start to spin expressed as a number from 0 to 1 in the entire output range. Should be lower than MOT_SPIN_MIN.
|
|
// @Values: 0.0:Low, 0.1:Default, 0.2:High
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SPIN_ARM", 19, AP_MotorsMulticopter, _spin_arm, AP_MOTORS_SPIN_ARM_DEFAULT),
|
|
|
|
// @Param: BAT_CURR_TC
|
|
// @DisplayName: Motor Current Max Time Constant
|
|
// @Description: Time constant used to limit the maximum current
|
|
// @Range: 0 10
|
|
// @Units: s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BAT_CURR_TC", 20, AP_MotorsMulticopter, _batt_current_time_constant, AP_MOTORS_BAT_CURR_TC_DEFAULT),
|
|
|
|
// @Param: THST_HOVER
|
|
// @DisplayName: Thrust Hover Value
|
|
// @Description: Motor thrust needed to hover expressed as a number from 0 to 1
|
|
// @Range: 0.2 0.8
|
|
// @User: Advanced
|
|
AP_GROUPINFO("THST_HOVER", 21, AP_MotorsMulticopter, _throttle_hover, AP_MOTORS_THST_HOVER_DEFAULT),
|
|
|
|
// @Param: HOVER_LEARN
|
|
// @DisplayName: Hover Value Learning
|
|
// @Description: Enable/Disable automatic learning of hover throttle
|
|
// @Values{Copter}: 0:Disabled, 1:Learn, 2:Learn and Save
|
|
// @Values{Sub}: 0:Disabled
|
|
// @Values{Plane}: 0:Disabled, 1:Learn, 2:Learn and Save
|
|
// @User: Advanced
|
|
AP_GROUPINFO("HOVER_LEARN", 22, AP_MotorsMulticopter, _throttle_hover_learn, HOVER_LEARN_AND_SAVE),
|
|
|
|
// @Param: SAFE_DISARM
|
|
// @DisplayName: Motor PWM output disabled when disarmed
|
|
// @Description: Disables motor PWM output when disarmed
|
|
// @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SAFE_DISARM", 23, AP_MotorsMulticopter, _disarm_disable_pwm, 0),
|
|
|
|
// @Param: YAW_SV_ANGLE
|
|
// @DisplayName: Yaw Servo Max Lean Angle
|
|
// @Description: Yaw servo's maximum lean angle (Tricopter only)
|
|
// @Range: 5 80
|
|
// @Units: deg
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO_FRAME("YAW_SV_ANGLE", 35, AP_MotorsMulticopter, _yaw_servo_angle_max_deg, 30, AP_PARAM_FRAME_TRICOPTER),
|
|
|
|
// @Param: SPOOL_TIME
|
|
// @DisplayName: Spool up time
|
|
// @Description: Time in seconds to spool up the motors from zero to min throttle.
|
|
// @Range: 0 2
|
|
// @Units: s
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SPOOL_TIME", 36, AP_MotorsMulticopter, _spool_up_time, AP_MOTORS_SPOOL_UP_TIME_DEFAULT),
|
|
|
|
// @Param: BOOST_SCALE
|
|
// @DisplayName: Motor boost scale
|
|
// @Description: Booster motor output scaling factor vs main throttle. The output to the BoostThrottle servo will be the main throttle times this scaling factor. A higher scaling factor will put more of the load on the booster motor. A value of 1 will set the BoostThrottle equal to the main throttle.
|
|
// @Range: 0 5
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BOOST_SCALE", 37, AP_MotorsMulticopter, _boost_scale, 0),
|
|
|
|
// 38 RESERVED for BAT_POW_MAX
|
|
|
|
// @Param: BAT_IDX
|
|
// @DisplayName: Battery compensation index
|
|
// @Description: Which battery monitor should be used for doing compensation
|
|
// @Values: 0:First battery, 1:Second battery
|
|
// @User: Advanced
|
|
AP_GROUPINFO("BAT_IDX", 39, AP_MotorsMulticopter, _batt_idx, 0),
|
|
|
|
// @Param: SLEW_UP_TIME
|
|
// @DisplayName: Output slew time for increasing throttle
|
|
// @Description: Time in seconds to slew output from zero to full. This is used to limit the rate at which output can change. Range is constrained between 0 and 0.5.
|
|
// @Range: 0 .5
|
|
// @Units: s
|
|
// @Increment: 0.001
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SLEW_UP_TIME", 40, AP_MotorsMulticopter, _slew_up_time, AP_MOTORS_SLEW_TIME_DEFAULT),
|
|
|
|
// @Param: SLEW_DN_TIME
|
|
// @DisplayName: Output slew time for decreasing throttle
|
|
// @Description: Time in seconds to slew output from full to zero. This is used to limit the rate at which output can change. Range is constrained between 0 and 0.5.
|
|
// @Range: 0 .5
|
|
// @Units: s
|
|
// @Increment: 0.001
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SLEW_DN_TIME", 41, AP_MotorsMulticopter, _slew_dn_time, AP_MOTORS_SLEW_TIME_DEFAULT),
|
|
|
|
// @Param: SAFE_TIME
|
|
// @DisplayName: Time taken to disable and enable the motor PWM output when disarmed and armed.
|
|
// @Description: Time taken to disable and enable the motor PWM output when disarmed and armed.
|
|
// @Range: 0 5
|
|
// @Units: s
|
|
// @Increment: 0.001
|
|
// @User: Advanced
|
|
AP_GROUPINFO("SAFE_TIME", 42, AP_MotorsMulticopter, _safe_time, AP_MOTORS_SAFE_TIME_DEFAULT),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Constructor
|
|
AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t speed_hz) :
|
|
AP_Motors(speed_hz),
|
|
_lift_max(1.0f),
|
|
_throttle_limit(1.0f)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// setup battery voltage filtering
|
|
_batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ);
|
|
_batt_voltage_filt.reset(1.0f);
|
|
|
|
};
|
|
|
|
// output - sends commands to the motors
|
|
void AP_MotorsMulticopter::output()
|
|
{
|
|
// update throttle filter
|
|
update_throttle_filter();
|
|
|
|
// calc filtered battery voltage and lift_max
|
|
update_lift_max_from_batt_voltage();
|
|
|
|
// run spool logic
|
|
output_logic();
|
|
|
|
// calculate thrust
|
|
output_armed_stabilizing();
|
|
|
|
// apply any thrust compensation for the frame
|
|
thrust_compensation();
|
|
|
|
// convert rpy_thrust values to pwm
|
|
output_to_motors();
|
|
|
|
// output any booster throttle
|
|
output_boost_throttle();
|
|
|
|
// output raw roll/pitch/yaw/thrust
|
|
output_rpyt();
|
|
};
|
|
|
|
// output booster throttle, if any
|
|
void AP_MotorsMulticopter::output_boost_throttle(void)
|
|
{
|
|
if (_boost_scale > 0) {
|
|
float throttle = constrain_float(get_throttle() * _boost_scale, 0, 1);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_boost_throttle, throttle * 1000);
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_boost_throttle, 0);
|
|
}
|
|
}
|
|
|
|
// output roll/pitch/yaw/thrust
|
|
void AP_MotorsMulticopter::output_rpyt(void)
|
|
{
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_roll_out, _roll_in_ff * 4500);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_pitch_out, _pitch_in_ff * 4500);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_yaw_out, _yaw_in_ff * 4500);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_thrust_out, get_throttle() * 1000);
|
|
}
|
|
|
|
// sends minimum values out to the motors
|
|
void AP_MotorsMulticopter::output_min()
|
|
{
|
|
set_desired_spool_state(DesiredSpoolState::SHUT_DOWN);
|
|
_spool_state = SpoolState::SHUT_DOWN;
|
|
output();
|
|
}
|
|
|
|
// update the throttle input filter
|
|
void AP_MotorsMulticopter::update_throttle_filter()
|
|
{
|
|
if (armed()) {
|
|
_throttle_filter.apply(_throttle_in, _dt);
|
|
// constrain filtered throttle
|
|
if (_throttle_filter.get() < 0.0f) {
|
|
_throttle_filter.reset(0.0f);
|
|
}
|
|
if (_throttle_filter.get() > 1.0f) {
|
|
_throttle_filter.reset(1.0f);
|
|
}
|
|
} else {
|
|
_throttle_filter.reset(0.0f);
|
|
}
|
|
}
|
|
|
|
// return current_limit as a number from 0 ~ 1 in the range throttle_min to throttle_max
|
|
float AP_MotorsMulticopter::get_current_limit_max_throttle()
|
|
{
|
|
AP_BattMonitor &battery = AP::battery();
|
|
|
|
float _batt_current;
|
|
|
|
if (_batt_current_max <= 0 || // return maximum if current limiting is disabled
|
|
!armed() || // remove throttle limit if disarmed
|
|
!battery.current_amps(_batt_current, _batt_idx)) { // no current monitoring is available
|
|
_throttle_limit = 1.0f;
|
|
return 1.0f;
|
|
}
|
|
|
|
float _batt_resistance = battery.get_resistance(_batt_idx);
|
|
|
|
if (is_zero(_batt_resistance)) {
|
|
_throttle_limit = 1.0f;
|
|
return 1.0f;
|
|
}
|
|
|
|
// calculate the maximum current to prevent voltage sag below _batt_voltage_min
|
|
float batt_current_max = MIN(_batt_current_max, _batt_current + (battery.voltage(_batt_idx) - _batt_voltage_min) / _batt_resistance);
|
|
|
|
float batt_current_ratio = _batt_current / batt_current_max;
|
|
|
|
_throttle_limit += (_dt / (_dt + _batt_current_time_constant)) * (1.0f - batt_current_ratio);
|
|
|
|
// throttle limit drops to 20% between hover and full throttle
|
|
_throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f);
|
|
|
|
// limit max throttle
|
|
return get_throttle_hover() + ((1.0 - get_throttle_hover()) * _throttle_limit);
|
|
}
|
|
|
|
// apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1
|
|
float AP_MotorsMulticopter::apply_thrust_curve_and_volt_scaling(float thrust) const
|
|
{
|
|
float battery_scale = 1.0;
|
|
if (is_positive(_batt_voltage_filt.get())) {
|
|
battery_scale = 1.0 / _batt_voltage_filt.get();
|
|
}
|
|
// apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0
|
|
float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f);
|
|
if (is_zero(thrust_curve_expo)) {
|
|
// zero expo means linear, avoid floating point exception for small values
|
|
return _lift_max * thrust * battery_scale;
|
|
}
|
|
float throttle_ratio = ((thrust_curve_expo - 1.0f) + safe_sqrt((1.0f - thrust_curve_expo) * (1.0f - thrust_curve_expo) + 4.0f * thrust_curve_expo * _lift_max * thrust)) / (2.0f * thrust_curve_expo);
|
|
return constrain_float(throttle_ratio * battery_scale, 0.0f, 1.0f);
|
|
}
|
|
|
|
// inverse of above, tested with AP_Motors/examples/expo_inverse_test
|
|
// used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions
|
|
float AP_MotorsMulticopter::remove_thrust_curve_and_volt_scaling(float throttle) const
|
|
{
|
|
float battery_scale = 1.0;
|
|
if (is_positive(_batt_voltage_filt.get())) {
|
|
battery_scale = 1.0 / _batt_voltage_filt.get();
|
|
}
|
|
// apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0
|
|
float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f);
|
|
if (is_zero(thrust_curve_expo)) {
|
|
// zero expo means linear, avoid floating point exception for small values
|
|
return throttle / (_lift_max * battery_scale);
|
|
}
|
|
float thrust = ((throttle / battery_scale) * (2.0f * thrust_curve_expo)) - (thrust_curve_expo - 1.0f);
|
|
thrust = (thrust * thrust) - ((1.0f - thrust_curve_expo) * (1.0f - thrust_curve_expo));
|
|
thrust /= 4.0f * thrust_curve_expo * _lift_max;
|
|
return constrain_float(thrust, 0.0f, 1.0f);
|
|
}
|
|
|
|
// update_lift_max from battery voltage - used for voltage compensation
|
|
void AP_MotorsMulticopter::update_lift_max_from_batt_voltage()
|
|
{
|
|
// sanity check battery_voltage_min is not too small
|
|
// if disabled or misconfigured exit immediately
|
|
float _batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(_batt_idx);
|
|
if ((_batt_voltage_max <= 0) || (_batt_voltage_min >= _batt_voltage_max) || (_batt_voltage_resting_estimate < 0.25f * _batt_voltage_min)) {
|
|
_batt_voltage_filt.reset(1.0f);
|
|
_lift_max = 1.0f;
|
|
return;
|
|
}
|
|
|
|
_batt_voltage_min.set(MAX(_batt_voltage_min, _batt_voltage_max * 0.6f));
|
|
|
|
// contrain resting voltage estimate (resting voltage is actual voltage with sag removed based on current draw and resistance)
|
|
_batt_voltage_resting_estimate = constrain_float(_batt_voltage_resting_estimate, _batt_voltage_min, _batt_voltage_max);
|
|
|
|
// filter at 0.5 Hz
|
|
float batt_voltage_filt = _batt_voltage_filt.apply(_batt_voltage_resting_estimate / _batt_voltage_max, _dt);
|
|
|
|
// calculate lift max
|
|
float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f);
|
|
_lift_max = batt_voltage_filt * (1 - thrust_curve_expo) + thrust_curve_expo * batt_voltage_filt * batt_voltage_filt;
|
|
}
|
|
|
|
// 10hz logging of voltage scaling and max trust
|
|
void AP_MotorsMulticopter::Log_Write()
|
|
{
|
|
const struct log_MotBatt pkt_mot {
|
|
LOG_PACKET_HEADER_INIT(LOG_MOTBATT_MSG),
|
|
time_us : AP_HAL::micros64(),
|
|
lift_max : _lift_max,
|
|
bat_volt : _batt_voltage_filt.get(),
|
|
th_limit : _throttle_limit,
|
|
th_average_max : _throttle_avg_max,
|
|
mot_fail_flags : (uint8_t)(_thrust_boost | (_thrust_balanced << 1U)),
|
|
};
|
|
AP::logger().WriteBlock(&pkt_mot, sizeof(pkt_mot));
|
|
}
|
|
|
|
float AP_MotorsMulticopter::get_compensation_gain() const
|
|
{
|
|
// avoid divide by zero
|
|
if (_lift_max <= 0.0f) {
|
|
return 1.0f;
|
|
}
|
|
|
|
float ret = 1.0f / _lift_max;
|
|
|
|
#if AP_MOTORS_DENSITY_COMP == 1
|
|
// air density ratio is increasing in density / decreasing in altitude
|
|
if (_air_density_ratio > 0.3f && _air_density_ratio < 1.5f) {
|
|
ret *= 1.0f / constrain_float(_air_density_ratio, 0.5f, 1.25f);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
// convert actuator output (0~1) range to pwm range
|
|
int16_t AP_MotorsMulticopter::output_to_pwm(float actuator)
|
|
{
|
|
float pwm_output;
|
|
if (_spool_state == SpoolState::SHUT_DOWN) {
|
|
// in shutdown mode, use PWM 0 or minimum PWM
|
|
if (_disarm_disable_pwm && !armed()) {
|
|
pwm_output = 0;
|
|
} else {
|
|
pwm_output = get_pwm_output_min();
|
|
}
|
|
} else {
|
|
// in all other spool modes, covert to desired PWM
|
|
pwm_output = get_pwm_output_min() + (get_pwm_output_max() - get_pwm_output_min()) * actuator;
|
|
}
|
|
|
|
return pwm_output;
|
|
}
|
|
|
|
// converts desired thrust to linearized actuator output in a range of 0~1
|
|
float AP_MotorsMulticopter::thrust_to_actuator(float thrust_in) const
|
|
{
|
|
thrust_in = constrain_float(thrust_in, 0.0f, 1.0f);
|
|
return _spin_min + (_spin_max - _spin_min) * apply_thrust_curve_and_volt_scaling(thrust_in);
|
|
}
|
|
|
|
// inverse of above, tested with AP_Motors/examples/expo_inverse_test
|
|
// used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions
|
|
float AP_MotorsMulticopter::actuator_to_thrust(float actuator) const
|
|
{
|
|
actuator = (actuator - _spin_min) / (_spin_max - _spin_min);
|
|
return constrain_float(remove_thrust_curve_and_volt_scaling(actuator), 0.0f, 1.0f);
|
|
}
|
|
|
|
// adds slew rate limiting to actuator output
|
|
void AP_MotorsMulticopter::set_actuator_with_slew(float& actuator_output, float input)
|
|
{
|
|
/*
|
|
If MOT_SLEW_UP_TIME is 0 (default), no slew limit is applied to increasing output.
|
|
If MOT_SLEW_DN_TIME is 0 (default), no slew limit is applied to decreasing output.
|
|
MOT_SLEW_UP_TIME and MOT_SLEW_DN_TIME are constrained to 0.0~0.5 for sanity.
|
|
If spool mode is shutdown, no slew limit is applied to allow immediate disarming of motors.
|
|
*/
|
|
|
|
// Output limits with no slew time applied
|
|
float output_slew_limit_up = 1.0f;
|
|
float output_slew_limit_dn = 0.0f;
|
|
|
|
// If MOT_SLEW_UP_TIME is set, calculate the highest allowed new output value, constrained 0.0~1.0
|
|
if (is_positive(_slew_up_time)) {
|
|
float output_delta_up_max = _dt / (constrain_float(_slew_up_time, 0.0f, 0.5f));
|
|
output_slew_limit_up = constrain_float(actuator_output + output_delta_up_max, 0.0f, 1.0f);
|
|
}
|
|
|
|
// If MOT_SLEW_DN_TIME is set, calculate the lowest allowed new output value, constrained 0.0~1.0
|
|
if (is_positive(_slew_dn_time)) {
|
|
float output_delta_dn_max = _dt / (constrain_float(_slew_dn_time, 0.0f, 0.5f));
|
|
output_slew_limit_dn = constrain_float(actuator_output - output_delta_dn_max, 0.0f, 1.0f);
|
|
}
|
|
|
|
// Constrain change in output to within the above limits
|
|
actuator_output = constrain_float(input, output_slew_limit_dn, output_slew_limit_up);
|
|
}
|
|
|
|
// gradually increase actuator output to spin_min
|
|
float AP_MotorsMulticopter::actuator_spin_up_to_ground_idle() const
|
|
{
|
|
return constrain_float(_spin_up_ratio, 0.0f, 1.0f) * _spin_min;
|
|
}
|
|
|
|
// parameter checks for MOT_PWM_MIN/MAX, returns true if parameters are valid
|
|
bool AP_MotorsMulticopter::check_mot_pwm_params() const
|
|
{
|
|
// _pwm_min is a value greater than or equal to 1.
|
|
// _pwm_max is greater than _pwm_min.
|
|
// The values of _pwm_min and _pwm_max are positive values.
|
|
if (_pwm_min < 1 || _pwm_min >= _pwm_max) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// update_throttle_range - update throttle endpoints
|
|
void AP_MotorsMulticopter::update_throttle_range()
|
|
{
|
|
// if all outputs are digital adjust the range. We also do this for type PWM_RANGE, as those use the
|
|
// scaled output, which is then mapped to PWM via the SRV_Channel library
|
|
if (SRV_Channels::have_digital_outputs(get_motor_mask()) || (_pwm_type == PWM_TYPE_PWM_RANGE)) {
|
|
_pwm_min.set_and_default(1000);
|
|
_pwm_max.set_and_default(2000);
|
|
}
|
|
|
|
hal.rcout->set_esc_scaling(get_pwm_output_min(), get_pwm_output_max());
|
|
}
|
|
|
|
// update the throttle input filter. should be called at 100hz
|
|
void AP_MotorsMulticopter::update_throttle_hover(float dt)
|
|
{
|
|
if (_throttle_hover_learn != HOVER_LEARN_DISABLED) {
|
|
// we have chosen to constrain the hover throttle to be within the range reachable by the third order expo polynomial.
|
|
_throttle_hover.set(constrain_float(_throttle_hover + (dt / (dt + AP_MOTORS_THST_HOVER_TC)) * (get_throttle() - _throttle_hover), AP_MOTORS_THST_HOVER_MIN, AP_MOTORS_THST_HOVER_MAX));
|
|
}
|
|
}
|
|
|
|
// run spool logic
|
|
void AP_MotorsMulticopter::output_logic()
|
|
{
|
|
if (armed()) {
|
|
if (_disarm_disable_pwm && (_disarm_safe_timer < _safe_time)) {
|
|
_disarm_safe_timer += _dt;
|
|
} else {
|
|
_disarm_safe_timer = _safe_time;
|
|
}
|
|
} else {
|
|
_disarm_safe_timer = 0.0f;
|
|
}
|
|
|
|
// force desired and current spool mode if disarmed or not interlocked
|
|
if (!armed() || !get_interlock()) {
|
|
_spool_desired = DesiredSpoolState::SHUT_DOWN;
|
|
_spool_state = SpoolState::SHUT_DOWN;
|
|
}
|
|
|
|
if (_spool_up_time < 0.05) {
|
|
// prevent float exception
|
|
_spool_up_time.set(0.05);
|
|
}
|
|
|
|
const float spool_step = _dt / _spool_up_time;
|
|
switch (_spool_state) {
|
|
case SpoolState::SHUT_DOWN:
|
|
// Motors should be stationary.
|
|
// Servos set to their trim values or in a test condition.
|
|
|
|
// set limits flags
|
|
limit.roll = true;
|
|
limit.pitch = true;
|
|
limit.yaw = true;
|
|
limit.throttle_lower = true;
|
|
limit.throttle_upper = true;
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired != DesiredSpoolState::SHUT_DOWN && _disarm_safe_timer >= _safe_time.get()) {
|
|
_spool_state = SpoolState::GROUND_IDLE;
|
|
break;
|
|
}
|
|
|
|
// set and increment ramp variables
|
|
_spin_up_ratio = 0.0f;
|
|
_throttle_thrust_max = 0.0f;
|
|
|
|
// initialise motor failure variables
|
|
_thrust_boost = false;
|
|
_thrust_boost_ratio = 0.0f;
|
|
break;
|
|
|
|
case SpoolState::GROUND_IDLE: {
|
|
// Motors should be stationary or at ground idle.
|
|
// Servos should be moving to correct the current attitude.
|
|
|
|
// set limits flags
|
|
limit.roll = true;
|
|
limit.pitch = true;
|
|
limit.yaw = true;
|
|
limit.throttle_lower = true;
|
|
limit.throttle_upper = true;
|
|
|
|
// set and increment ramp variables
|
|
switch (_spool_desired) {
|
|
case DesiredSpoolState::SHUT_DOWN:
|
|
_spin_up_ratio -= spool_step;
|
|
// constrain ramp value and update mode
|
|
if (_spin_up_ratio <= 0.0f) {
|
|
_spin_up_ratio = 0.0f;
|
|
_spool_state = SpoolState::SHUT_DOWN;
|
|
}
|
|
break;
|
|
|
|
case DesiredSpoolState::THROTTLE_UNLIMITED:
|
|
_spin_up_ratio += spool_step;
|
|
// constrain ramp value and update mode
|
|
if (_spin_up_ratio >= 1.0f) {
|
|
_spin_up_ratio = 1.0f;
|
|
if (!get_spoolup_block()) {
|
|
// Only advance from ground idle if spoolup checks have passed
|
|
_spool_state = SpoolState::SPOOLING_UP;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DesiredSpoolState::GROUND_IDLE:
|
|
float spin_up_armed_ratio = 0.0f;
|
|
if (_spin_min > 0.0f) {
|
|
spin_up_armed_ratio = _spin_arm / _spin_min;
|
|
}
|
|
_spin_up_ratio += constrain_float(spin_up_armed_ratio - _spin_up_ratio, -spool_step, spool_step);
|
|
break;
|
|
}
|
|
_throttle_thrust_max = 0.0f;
|
|
|
|
// initialise motor failure variables
|
|
_thrust_boost = false;
|
|
_thrust_boost_ratio = 0.0f;
|
|
break;
|
|
}
|
|
case SpoolState::SPOOLING_UP:
|
|
// Maximum throttle should move from minimum to maximum.
|
|
// Servos should exhibit normal flight behavior.
|
|
|
|
// initialize limits flags
|
|
limit.roll = false;
|
|
limit.pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED) {
|
|
_spool_state = SpoolState::SPOOLING_DOWN;
|
|
break;
|
|
}
|
|
|
|
// set and increment ramp variables
|
|
_spin_up_ratio = 1.0f;
|
|
_throttle_thrust_max += spool_step;
|
|
|
|
// constrain ramp value and update mode
|
|
if (_throttle_thrust_max >= MIN(get_throttle(), get_current_limit_max_throttle())) {
|
|
_throttle_thrust_max = get_current_limit_max_throttle();
|
|
_spool_state = SpoolState::THROTTLE_UNLIMITED;
|
|
} else if (_throttle_thrust_max < 0.0f) {
|
|
_throttle_thrust_max = 0.0f;
|
|
}
|
|
|
|
// initialise motor failure variables
|
|
_thrust_boost = false;
|
|
_thrust_boost_ratio = MAX(0.0, _thrust_boost_ratio - spool_step);
|
|
break;
|
|
|
|
case SpoolState::THROTTLE_UNLIMITED:
|
|
// Throttle should exhibit normal flight behavior.
|
|
// Servos should exhibit normal flight behavior.
|
|
|
|
// initialize limits flags
|
|
limit.roll = false;
|
|
limit.pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED) {
|
|
_spool_state = SpoolState::SPOOLING_DOWN;
|
|
break;
|
|
}
|
|
|
|
// set and increment ramp variables
|
|
_spin_up_ratio = 1.0f;
|
|
_throttle_thrust_max = get_current_limit_max_throttle();
|
|
|
|
if (_thrust_boost && !_thrust_balanced) {
|
|
_thrust_boost_ratio = MIN(1.0, _thrust_boost_ratio + spool_step);
|
|
} else {
|
|
_thrust_boost_ratio = MAX(0.0, _thrust_boost_ratio - spool_step);
|
|
}
|
|
break;
|
|
|
|
case SpoolState::SPOOLING_DOWN:
|
|
// Maximum throttle should move from maximum to minimum.
|
|
// Servos should exhibit normal flight behavior.
|
|
|
|
// initialize limits flags
|
|
limit.roll = false;
|
|
limit.pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired == DesiredSpoolState::THROTTLE_UNLIMITED) {
|
|
_spool_state = SpoolState::SPOOLING_UP;
|
|
break;
|
|
}
|
|
|
|
// set and increment ramp variables
|
|
_spin_up_ratio = 1.0f;
|
|
_throttle_thrust_max -= spool_step;
|
|
|
|
// constrain ramp value and update mode
|
|
if (_throttle_thrust_max <= 0.0f) {
|
|
_throttle_thrust_max = 0.0f;
|
|
}
|
|
if (_throttle_thrust_max >= get_current_limit_max_throttle()) {
|
|
_throttle_thrust_max = get_current_limit_max_throttle();
|
|
} else if (is_zero(_throttle_thrust_max)) {
|
|
_spool_state = SpoolState::GROUND_IDLE;
|
|
}
|
|
|
|
_thrust_boost_ratio = MAX(0.0, _thrust_boost_ratio - spool_step);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// passes throttle directly to all motors for ESC calibration.
|
|
// throttle_input is in the range of 0 ~ 1 where 0 will send get_pwm_output_min() and 1 will send get_pwm_output_max()
|
|
void AP_MotorsMulticopter::set_throttle_passthrough_for_esc_calibration(float throttle_input)
|
|
{
|
|
if (armed()) {
|
|
uint16_t pwm_out = get_pwm_output_min() + constrain_float(throttle_input, 0.0f, 1.0f) * (get_pwm_output_max() - get_pwm_output_min());
|
|
// send the pilot's input directly to each enabled motor
|
|
for (uint16_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rc_write(i, pwm_out);
|
|
}
|
|
}
|
|
// send pwm output to channels used by bicopter
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm_out);
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm_out);
|
|
}
|
|
}
|
|
|
|
// output a thrust to all motors that match a given motor mask. This
|
|
// is used to control tiltrotor motors in forward flight. Thrust is in
|
|
// the range 0 to 1
|
|
void AP_MotorsMulticopter::output_motor_mask(float thrust, uint8_t mask, float rudder_dt)
|
|
{
|
|
const int16_t pwm_min = get_pwm_output_min();
|
|
const int16_t pwm_range = get_pwm_output_max() - pwm_min;
|
|
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
if ((mask & (1U << i)) && armed() && get_interlock()) {
|
|
/*
|
|
apply rudder mixing differential thrust
|
|
copter frame roll is plane frame yaw as this only
|
|
apples to either tilted motors or tailsitters
|
|
*/
|
|
float diff_thrust = get_roll_factor(i) * rudder_dt * 0.5f;
|
|
set_actuator_with_slew(_actuator[i], thrust + diff_thrust);
|
|
int16_t pwm_output = pwm_min + pwm_range * _actuator[i];
|
|
rc_write(i, pwm_output);
|
|
} else {
|
|
rc_write(i, pwm_min);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint32_t AP_MotorsMulticopter::get_motor_mask()
|
|
{
|
|
return SRV_Channels::get_output_channel_mask(SRV_Channel::k_boost_throttle);
|
|
}
|
|
|
|
// save parameters as part of disarming
|
|
void AP_MotorsMulticopter::save_params_on_disarm()
|
|
{
|
|
// save hover throttle
|
|
if (_throttle_hover_learn == HOVER_LEARN_AND_SAVE) {
|
|
_throttle_hover.save();
|
|
}
|
|
}
|
|
|
|
// convert to PWM min and max in the motor lib
|
|
void AP_MotorsMulticopter::convert_pwm_min_max_param(int16_t radio_min, int16_t radio_max)
|
|
{
|
|
if (_pwm_min.configured() || _pwm_max.configured()) {
|
|
return;
|
|
}
|
|
_pwm_min.set_and_save(radio_min);
|
|
_pwm_max.set_and_save(radio_max);
|
|
}
|
|
|
|
bool AP_MotorsMulticopter::arming_checks(size_t buflen, char *buffer) const
|
|
{
|
|
// run base class checks
|
|
if (!AP_Motors::arming_checks(buflen, buffer)) {
|
|
return false;
|
|
}
|
|
|
|
// Check output function is setup for each motor
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (!motor_enabled[i]) {
|
|
continue;
|
|
}
|
|
uint8_t chan;
|
|
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(i);
|
|
if (!SRV_Channels::find_channel(function, chan)) {
|
|
hal.util->snprintf(buffer, buflen, "no SERVOx_FUNCTION set to Motor%u", i + 1);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (_spin_min > 0.3) {
|
|
hal.util->snprintf(buffer, buflen, "SPIN_MIN too high %.2f, max 0.3", _spin_min.get());
|
|
return false;
|
|
}
|
|
if (_spin_arm > _spin_min) {
|
|
hal.util->snprintf(buffer, buflen, "SPIN_ARM higher than SPIN_MIN");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|