mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
1185 lines
50 KiB
C++
1185 lines
50 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
#include "AC_PosControl.h"
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane)
|
|
// default gains for Plane
|
|
# define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default
|
|
# define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default
|
|
# define POSCONTROL_VEL_Z_IMAX 1000.0f // vertical velocity controller IMAX gain default
|
|
# define POSCONTROL_VEL_Z_FILT_HZ 5.0f // vertical velocity controller input filter
|
|
# define POSCONTROL_VEL_Z_FILT_D_HZ 5.0f // vertical velocity controller input filter for D
|
|
# define POSCONTROL_ACC_Z_P 0.3f // vertical acceleration controller P gain default
|
|
# define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default
|
|
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
|
|
# define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default
|
|
# define POSCONTROL_ACC_Z_FILT_HZ 10.0f // vertical acceleration controller input filter default
|
|
# define POSCONTROL_ACC_Z_DT 0.02f // vertical acceleration controller dt default
|
|
# define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default
|
|
# define POSCONTROL_VEL_XY_P 1.4f // horizontal velocity controller P gain default
|
|
# define POSCONTROL_VEL_XY_I 0.7f // horizontal velocity controller I gain default
|
|
# define POSCONTROL_VEL_XY_D 0.35f // horizontal velocity controller D gain default
|
|
# define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default
|
|
# define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter
|
|
# define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D
|
|
#elif APM_BUILD_TYPE(APM_BUILD_ArduSub)
|
|
// default gains for Sub
|
|
# define POSCONTROL_POS_Z_P 3.0f // vertical position controller P gain default
|
|
# define POSCONTROL_VEL_Z_P 8.0f // vertical velocity controller P gain default
|
|
# define POSCONTROL_VEL_Z_IMAX 1000.0f // vertical velocity controller IMAX gain default
|
|
# define POSCONTROL_VEL_Z_FILT_HZ 5.0f // vertical velocity controller input filter
|
|
# define POSCONTROL_VEL_Z_FILT_D_HZ 5.0f // vertical velocity controller input filter for D
|
|
# define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default
|
|
# define POSCONTROL_ACC_Z_I 0.1f // vertical acceleration controller I gain default
|
|
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
|
|
# define POSCONTROL_ACC_Z_IMAX 100 // vertical acceleration controller IMAX gain default
|
|
# define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default
|
|
# define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default
|
|
# define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default
|
|
# define POSCONTROL_VEL_XY_P 1.0f // horizontal velocity controller P gain default
|
|
# define POSCONTROL_VEL_XY_I 0.5f // horizontal velocity controller I gain default
|
|
# define POSCONTROL_VEL_XY_D 0.0f // horizontal velocity controller D gain default
|
|
# define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default
|
|
# define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter
|
|
# define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D
|
|
#else
|
|
// default gains for Copter / TradHeli
|
|
# define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default
|
|
# define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default
|
|
# define POSCONTROL_VEL_Z_IMAX 1000.0f // vertical velocity controller IMAX gain default
|
|
# define POSCONTROL_VEL_Z_FILT_HZ 5.0f // vertical velocity controller input filter
|
|
# define POSCONTROL_VEL_Z_FILT_D_HZ 5.0f // vertical velocity controller input filter for D
|
|
# define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default
|
|
# define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default
|
|
# define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
|
|
# define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default
|
|
# define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default
|
|
# define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default
|
|
# define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default
|
|
# define POSCONTROL_VEL_XY_P 2.0f // horizontal velocity controller P gain default
|
|
# define POSCONTROL_VEL_XY_I 1.0f // horizontal velocity controller I gain default
|
|
# define POSCONTROL_VEL_XY_D 0.5f // horizontal velocity controller D gain default
|
|
# define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default
|
|
# define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter
|
|
# define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D
|
|
#endif
|
|
|
|
// vibration compensation gains
|
|
#define POSCONTROL_VIBE_COMP_P_GAIN 0.250f
|
|
#define POSCONTROL_VIBE_COMP_I_GAIN 0.125f
|
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] = {
|
|
// 0 was used for HOVER
|
|
|
|
// @Param: _ACC_XY_FILT
|
|
// @DisplayName: XY Acceleration filter cutoff frequency
|
|
// @Description: Lower values will slow the response of the navigation controller and reduce twitchiness
|
|
// @Units: Hz
|
|
// @Range: 0.5 5
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_ACC_XY_FILT", 1, AC_PosControl, _accel_xy_filt_hz, POSCONTROL_ACCEL_FILTER_HZ),
|
|
|
|
// @Param: _POSZ_P
|
|
// @DisplayName: Position (vertical) controller P gain
|
|
// @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller
|
|
// @Range: 1.000 3.000
|
|
// @User: Standard
|
|
AP_SUBGROUPINFO(_p_pos_z, "_POSZ_", 2, AC_PosControl, AC_P_1D),
|
|
|
|
// @Param: _VELZ_P
|
|
// @DisplayName: Velocity (vertical) controller P gain
|
|
// @Description: Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller
|
|
// @Range: 1.000 8.000
|
|
// @User: Standard
|
|
|
|
// @Param: _VELZ_I
|
|
// @DisplayName: Velocity (vertical) controller I gain
|
|
// @Description: Velocity (vertical) controller I gain. Corrects long-term difference in desired velocity to a target acceleration
|
|
// @Range: 0.02 1.00
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELZ_IMAX
|
|
// @DisplayName: Velocity (vertical) controller I gain maximum
|
|
// @Description: Velocity (vertical) controller I gain maximum. Constrains the target acceleration that the I gain will output
|
|
// @Range: 1.000 8.000
|
|
// @User: Standard
|
|
|
|
// @Param: _VELZ_D
|
|
// @DisplayName: Velocity (vertical) controller D gain
|
|
// @Description: Velocity (vertical) controller D gain. Corrects short-term changes in velocity
|
|
// @Range: 0.00 1.00
|
|
// @Increment: 0.001
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELZ_FF
|
|
// @DisplayName: Velocity (vertical) controller Feed Forward gain
|
|
// @Description: Velocity (vertical) controller Feed Forward gain. Produces an output that is proportional to the magnitude of the target
|
|
// @Range: 0 1
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELZ_FLTE
|
|
// @DisplayName: Velocity (vertical) error filter
|
|
// @Description: Velocity (vertical) error filter. This filter (in Hz) is applied to the input for P and I terms
|
|
// @Range: 0 100
|
|
// @Units: Hz
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELZ_FLTD
|
|
// @DisplayName: Velocity (vertical) input filter for D term
|
|
// @Description: Velocity (vertical) input filter for D term. This filter (in Hz) is applied to the input for D terms
|
|
// @Range: 0 100
|
|
// @Units: Hz
|
|
// @User: Advanced
|
|
AP_SUBGROUPINFO(_pid_vel_z, "_VELZ_", 3, AC_PosControl, AC_PID_Basic),
|
|
|
|
// @Param: _ACCZ_P
|
|
// @DisplayName: Acceleration (vertical) controller P gain
|
|
// @Description: Acceleration (vertical) controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output
|
|
// @Range: 0.500 1.500
|
|
// @Increment: 0.05
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_I
|
|
// @DisplayName: Acceleration (vertical) controller I gain
|
|
// @Description: Acceleration (vertical) controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration
|
|
// @Range: 0.000 3.000
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_IMAX
|
|
// @DisplayName: Acceleration (vertical) controller I gain maximum
|
|
// @Description: Acceleration (vertical) controller I gain maximum. Constrains the maximum pwm that the I term will generate
|
|
// @Range: 0 1000
|
|
// @Units: d%
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_D
|
|
// @DisplayName: Acceleration (vertical) controller D gain
|
|
// @Description: Acceleration (vertical) controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration
|
|
// @Range: 0.000 0.400
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_FF
|
|
// @DisplayName: Acceleration (vertical) controller feed forward
|
|
// @Description: Acceleration (vertical) controller feed forward
|
|
// @Range: 0 0.5
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_FLTT
|
|
// @DisplayName: Acceleration (vertical) controller target frequency in Hz
|
|
// @Description: Acceleration (vertical) controller target frequency in Hz
|
|
// @Range: 1 50
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_FLTE
|
|
// @DisplayName: Acceleration (vertical) controller error frequency in Hz
|
|
// @Description: Acceleration (vertical) controller error frequency in Hz
|
|
// @Range: 1 100
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_FLTD
|
|
// @DisplayName: Acceleration (vertical) controller derivative frequency in Hz
|
|
// @Description: Acceleration (vertical) controller derivative frequency in Hz
|
|
// @Range: 1 100
|
|
// @Increment: 1
|
|
// @Units: Hz
|
|
// @User: Standard
|
|
|
|
// @Param: _ACCZ_SMAX
|
|
// @DisplayName: Accel (vertical) slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
|
|
AP_SUBGROUPINFO(_pid_accel_z, "_ACCZ_", 4, AC_PosControl, AC_PID),
|
|
|
|
// @Param: _POSXY_P
|
|
// @DisplayName: Position (horizontal) controller P gain
|
|
// @Description: Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller
|
|
// @Range: 0.500 2.000
|
|
// @User: Standard
|
|
AP_SUBGROUPINFO(_p_pos_xy, "_POSXY_", 5, AC_PosControl, AC_P_2D),
|
|
|
|
// @Param: _VELXY_P
|
|
// @DisplayName: Velocity (horizontal) P gain
|
|
// @Description: Velocity (horizontal) P gain. Converts the difference between desired and actual velocity to a target acceleration
|
|
// @Range: 0.1 6.0
|
|
// @Increment: 0.1
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELXY_I
|
|
// @DisplayName: Velocity (horizontal) I gain
|
|
// @Description: Velocity (horizontal) I gain. Corrects long-term difference between desired and actual velocity to a target acceleration
|
|
// @Range: 0.02 1.00
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELXY_D
|
|
// @DisplayName: Velocity (horizontal) D gain
|
|
// @Description: Velocity (horizontal) D gain. Corrects short-term changes in velocity
|
|
// @Range: 0.00 1.00
|
|
// @Increment: 0.001
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELXY_IMAX
|
|
// @DisplayName: Velocity (horizontal) integrator maximum
|
|
// @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output
|
|
// @Range: 0 4500
|
|
// @Increment: 10
|
|
// @Units: cm/s/s
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELXY_FILT
|
|
// @DisplayName: Velocity (horizontal) input filter
|
|
// @Description: Velocity (horizontal) input filter. This filter (in Hz) is applied to the input for P and I terms
|
|
// @Range: 0 100
|
|
// @Units: Hz
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELXY_D_FILT
|
|
// @DisplayName: Velocity (horizontal) input filter
|
|
// @Description: Velocity (horizontal) input filter. This filter (in Hz) is applied to the input for D term
|
|
// @Range: 0 100
|
|
// @Units: Hz
|
|
// @User: Advanced
|
|
|
|
// @Param: _VELXY_FF
|
|
// @DisplayName: Velocity (horizontal) feed forward gain
|
|
// @Description: Velocity (horizontal) feed forward gain. Converts the difference between desired velocity to a target acceleration
|
|
// @Range: 0 6
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
AP_SUBGROUPINFO(_pid_vel_xy, "_VELXY_", 6, AC_PosControl, AC_PID_2D),
|
|
|
|
// @Param: _ANGLE_MAX
|
|
// @DisplayName: Position Control Angle Max
|
|
// @Description: Maximum lean angle autopilot can request. Set to zero to use ANGLE_MAX parameter value
|
|
// @Units: deg
|
|
// @Range: 0 45
|
|
// @Increment: 1
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_ANGLE_MAX", 7, AC_PosControl, _lean_angle_max, 0.0f),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
AC_PosControl::AC_PosControl(AP_AHRS_View& ahrs, const AP_InertialNav& inav,
|
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control) :
|
|
_ahrs(ahrs),
|
|
_inav(inav),
|
|
_motors(motors),
|
|
_attitude_control(attitude_control),
|
|
_p_pos_z(POSCONTROL_POS_Z_P, POSCONTROL_DT_400HZ),
|
|
_pid_vel_z(POSCONTROL_VEL_Z_P, 0.0f, 0.0f, 0.0f, POSCONTROL_VEL_Z_IMAX, POSCONTROL_VEL_Z_FILT_HZ, POSCONTROL_VEL_Z_FILT_D_HZ, POSCONTROL_DT_400HZ),
|
|
_pid_accel_z(POSCONTROL_ACC_Z_P, POSCONTROL_ACC_Z_I, POSCONTROL_ACC_Z_D, 0.0f, POSCONTROL_ACC_Z_IMAX, 0.0f, POSCONTROL_ACC_Z_FILT_HZ, 0.0f, POSCONTROL_DT_400HZ),
|
|
_p_pos_xy(POSCONTROL_POS_XY_P, POSCONTROL_DT_400HZ),
|
|
_pid_vel_xy(POSCONTROL_VEL_XY_P, POSCONTROL_VEL_XY_I, POSCONTROL_VEL_XY_D, 0.0f, POSCONTROL_VEL_XY_IMAX, POSCONTROL_VEL_XY_FILT_HZ, POSCONTROL_VEL_XY_FILT_D_HZ, POSCONTROL_DT_400HZ),
|
|
_dt(POSCONTROL_DT_400HZ),
|
|
_speed_down_cms(POSCONTROL_SPEED_DOWN),
|
|
_speed_up_cms(POSCONTROL_SPEED_UP),
|
|
_speed_cms(POSCONTROL_SPEED),
|
|
_accel_z_cms(POSCONTROL_ACCEL_Z),
|
|
_accel_cms(POSCONTROL_ACCEL_XY),
|
|
_leash(POSCONTROL_LEASH_LENGTH_MIN),
|
|
_leash_down_z(POSCONTROL_LEASH_LENGTH_MIN),
|
|
_leash_up_z(POSCONTROL_LEASH_LENGTH_MIN),
|
|
_accel_target_filter(POSCONTROL_ACCEL_FILTER_HZ)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// initialise flags
|
|
_flags.recalc_leash_z = true;
|
|
_flags.recalc_leash_xy = true;
|
|
_flags.reset_desired_vel_to_pos = true;
|
|
_flags.reset_accel_to_lean_xy = true;
|
|
_flags.reset_rate_to_accel_z = true;
|
|
_limit.pos_up = true;
|
|
_limit.pos_down = true;
|
|
_limit.vel_up = true;
|
|
_limit.vel_down = true;
|
|
_limit.accel_xy = true;
|
|
}
|
|
|
|
///
|
|
/// z-axis position controller
|
|
///
|
|
|
|
/// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025)
|
|
void AC_PosControl::set_dt(float delta_sec)
|
|
{
|
|
_dt = delta_sec;
|
|
|
|
// update PID controller dt
|
|
_p_pos_z.set_dt(_dt);
|
|
_pid_vel_z.set_dt(_dt);
|
|
_pid_accel_z.set_dt(_dt);
|
|
_p_pos_xy.set_dt(_dt);
|
|
_pid_vel_xy.set_dt(_dt);
|
|
|
|
// update rate z-axis velocity error and accel error filters
|
|
_vel_error_filter.set_cutoff_frequency(POSCONTROL_VEL_ERROR_CUTOFF_FREQ);
|
|
}
|
|
|
|
/// set_max_speed_z - set the maximum climb and descent rates
|
|
/// To-Do: call this in the main code as part of flight mode initialisation
|
|
void AC_PosControl::set_max_speed_z(float speed_down, float speed_up)
|
|
{
|
|
// ensure speed_down is always negative
|
|
speed_down = -fabsf(speed_down);
|
|
|
|
// exit immediately if no change in speed up or down
|
|
if (is_equal(_speed_down_cms, speed_down) && is_equal(_speed_up_cms, speed_up)) {
|
|
return;
|
|
}
|
|
|
|
// sanity check speeds and update
|
|
if (is_positive(speed_up) && is_negative(speed_down)) {
|
|
_speed_down_cms = speed_down;
|
|
_speed_up_cms = speed_up;
|
|
_flags.recalc_leash_z = true;
|
|
calc_leash_length_z();
|
|
}
|
|
}
|
|
|
|
/// set_max_accel_z - set the maximum vertical acceleration in cm/s/s
|
|
void AC_PosControl::set_max_accel_z(float accel_cmss)
|
|
{
|
|
// exit immediately if no change in acceleration
|
|
if (is_equal(_accel_z_cms, accel_cmss)) {
|
|
return;
|
|
}
|
|
|
|
_accel_z_cms = accel_cmss;
|
|
_flags.recalc_leash_z = true;
|
|
calc_leash_length_z();
|
|
}
|
|
|
|
/// set_alt_target_with_slew - adjusts target towards a final altitude target
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt)
|
|
{
|
|
float alt_change = alt_cm - _pos_target.z;
|
|
_vel_desired.z = 0.0f;
|
|
|
|
// adjust desired alt if motors have not hit their limits
|
|
if ((alt_change < 0 && !_motors.limit.throttle_lower) || (alt_change > 0 && !_motors.limit.throttle_upper)) {
|
|
if (!is_zero(dt)) {
|
|
float climb_rate_cms = constrain_float(alt_change / dt, _speed_down_cms, _speed_up_cms);
|
|
_pos_target.z += climb_rate_cms * dt;
|
|
}
|
|
}
|
|
|
|
// do not let target get too far from current altitude
|
|
float curr_alt = _inav.get_altitude();
|
|
_pos_target.z = constrain_float(_pos_target.z, curr_alt - _leash_down_z, curr_alt + _leash_up_z);
|
|
}
|
|
|
|
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend)
|
|
{
|
|
// adjust desired alt if motors have not hit their limits
|
|
// To-Do: add check of _limit.pos_down?
|
|
if ((climb_rate_cms < 0 && (!_motors.limit.throttle_lower || force_descend)) || (climb_rate_cms > 0 && !_motors.limit.throttle_upper && !_limit.pos_up)) {
|
|
_pos_target.z += climb_rate_cms * dt;
|
|
}
|
|
|
|
// do not use z-axis desired velocity feed forward
|
|
_vel_desired.z = 0.0f;
|
|
}
|
|
|
|
/// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
/// set force_descend to true during landing to allow target to move low enough to slow the motors
|
|
void AC_PosControl::set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend)
|
|
{
|
|
// calculated increased maximum acceleration if over speed
|
|
float accel_z_cms = _accel_z_cms;
|
|
if (_vel_desired.z < _speed_down_cms && !is_zero(_speed_down_cms)) {
|
|
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_down_cms;
|
|
}
|
|
if (_vel_desired.z > _speed_up_cms && !is_zero(_speed_up_cms)) {
|
|
accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_up_cms;
|
|
}
|
|
accel_z_cms = constrain_float(accel_z_cms, 0.0f, 750.0f);
|
|
|
|
// jerk_z is calculated to reach full acceleration in 1000ms.
|
|
const float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO;
|
|
|
|
const float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f * fabsf(climb_rate_cms - _vel_desired.z) * jerk_z));
|
|
|
|
// jerk limit the acceleration increase
|
|
_accel_last_z_cms += jerk_z * dt;
|
|
// jerk limit the decrease as zero error is approached
|
|
_accel_last_z_cms = MIN(_accel_last_z_cms, accel_z_max);
|
|
// remove overshoot during last time step
|
|
_accel_last_z_cms = MIN(_accel_last_z_cms, fabsf(climb_rate_cms - _vel_desired.z) / dt);
|
|
|
|
if (is_positive(climb_rate_cms - _vel_desired.z)){
|
|
_accel_desired.z = _accel_last_z_cms;
|
|
} else {
|
|
_accel_desired.z = -_accel_last_z_cms;
|
|
}
|
|
|
|
float vel_change_limit = _accel_last_z_cms * dt;
|
|
_vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z - vel_change_limit, _vel_desired.z + vel_change_limit);
|
|
|
|
// adjust desired alt if motors have not hit their limits
|
|
// To-Do: add check of _limit.pos_down?
|
|
if ((_vel_desired.z < 0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z > 0 && !_motors.limit.throttle_upper && !_limit.pos_up)) {
|
|
_pos_target.z += _vel_desired.z * dt;
|
|
}
|
|
}
|
|
|
|
/// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// almost no checks are performed on the input
|
|
void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt)
|
|
{
|
|
_pos_target.z += climb_rate_cms * dt;
|
|
}
|
|
|
|
/// shift altitude target (positive means move altitude up)
|
|
void AC_PosControl::shift_alt_target(float z_cm)
|
|
{
|
|
_pos_target.z += z_cm;
|
|
}
|
|
|
|
/// relax_alt_hold_controllers - set all desired and targets to measured
|
|
void AC_PosControl::relax_alt_hold_controllers(float throttle_setting)
|
|
{
|
|
_pos_target.z = _inav.get_altitude();
|
|
_vel_desired.z = 0.0f;
|
|
_vel_target.z = _inav.get_velocity_z();
|
|
_accel_desired.z = 0.0f;
|
|
_accel_last_z_cms = 0.0f;
|
|
_flags.reset_rate_to_accel_z = true;
|
|
_pid_accel_z.set_integrator((throttle_setting - _motors.get_throttle_hover()) * 1000.0f);
|
|
_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
|
|
_pid_accel_z.reset_filter();
|
|
}
|
|
|
|
// get_alt_error - returns altitude error in cm
|
|
float AC_PosControl::get_alt_error() const
|
|
{
|
|
return (_pos_target.z - _inav.get_altitude());
|
|
}
|
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home
|
|
void AC_PosControl::set_target_to_stopping_point_z()
|
|
{
|
|
// check if z leash needs to be recalculated
|
|
calc_leash_length_z();
|
|
|
|
get_stopping_point_z(_pos_target);
|
|
}
|
|
|
|
/// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration
|
|
void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const
|
|
{
|
|
const float curr_pos_z = _inav.get_altitude();
|
|
float curr_vel_z = _inav.get_velocity_z();
|
|
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt
|
|
float linear_velocity; // the velocity we swap between linear and sqrt
|
|
|
|
// if position controller is active add current velocity error to avoid sudden jump in acceleration
|
|
if (is_active_z()) {
|
|
curr_vel_z -= _vel_desired.z;
|
|
}
|
|
|
|
// avoid divide by zero by using current position if kP is very low or acceleration is zero
|
|
if (_p_pos_z.kP() <= 0.0f || _accel_z_cms <= 0.0f) {
|
|
stopping_point.z = curr_pos_z;
|
|
return;
|
|
}
|
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
|
|
linear_velocity = _accel_z_cms / _p_pos_z.kP();
|
|
|
|
if (fabsf(curr_vel_z) < linear_velocity) {
|
|
// if our current velocity is below the cross-over point we use a linear function
|
|
stopping_point.z = curr_pos_z + curr_vel_z / _p_pos_z.kP();
|
|
} else {
|
|
linear_distance = _accel_z_cms / (2.0f * _p_pos_z.kP() * _p_pos_z.kP());
|
|
if (curr_vel_z > 0) {
|
|
stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z * curr_vel_z / (2.0f * _accel_z_cms));
|
|
} else {
|
|
stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z * curr_vel_z / (2.0f * _accel_z_cms));
|
|
}
|
|
}
|
|
stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_DOWN_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_UP_MAX);
|
|
}
|
|
|
|
/// init_takeoff - initialises target altitude if we are taking off
|
|
void AC_PosControl::init_takeoff()
|
|
{
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
|
|
_pos_target.z = curr_pos.z;
|
|
|
|
// shift difference between last motor out and hover throttle into accelerometer I
|
|
_pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f);
|
|
|
|
// initialise ekf reset handler
|
|
init_ekf_z_reset();
|
|
}
|
|
|
|
// is_active_z - returns true if the z-axis position controller has been run very recently
|
|
bool AC_PosControl::is_active_z() const
|
|
{
|
|
return ((AP_HAL::micros64() - _last_update_z_us) <= POSCONTROL_ACTIVE_TIMEOUT_US);
|
|
}
|
|
|
|
/// update_z_controller - fly to altitude in cm above home
|
|
void AC_PosControl::update_z_controller()
|
|
{
|
|
// check time since last cast
|
|
const uint64_t now_us = AP_HAL::micros64();
|
|
if (now_us - _last_update_z_us > POSCONTROL_ACTIVE_TIMEOUT_US) {
|
|
_flags.reset_rate_to_accel_z = true;
|
|
_pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f);
|
|
_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
|
|
_pid_accel_z.reset_filter();
|
|
}
|
|
_last_update_z_us = now_us;
|
|
|
|
// check for ekf altitude reset
|
|
check_for_ekf_z_reset();
|
|
|
|
// check if leash lengths need to be recalculated
|
|
calc_leash_length_z();
|
|
|
|
// call z-axis position controller
|
|
run_z_controller();
|
|
}
|
|
|
|
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
|
|
/// called by update_z_controller if z-axis speed or accelerations are changed
|
|
void AC_PosControl::calc_leash_length_z()
|
|
{
|
|
if (_flags.recalc_leash_z) {
|
|
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_pos_z.kP());
|
|
_leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_pos_z.kP());
|
|
_flags.recalc_leash_z = false;
|
|
}
|
|
}
|
|
|
|
// run position control for Z axis
|
|
// target altitude should be set with one of these functions: set_alt_target, set_target_to_stopping_point_z, init_takeoff
|
|
// calculates desired rate in earth-frame z axis and passes to rate controller
|
|
// vel_up_max, vel_down_max should have already been set before calling this method
|
|
void AC_PosControl::run_z_controller()
|
|
{
|
|
// Position Controller
|
|
|
|
float curr_alt = _inav.get_altitude();
|
|
// define maximum position error and maximum first and second differential limits
|
|
_p_pos_z.set_limits_error(-fabsf(_leash_down_z), _leash_up_z, -fabsf(_speed_down_cms), _speed_up_cms);
|
|
// calculate the target velocity correction
|
|
_vel_target.z = _p_pos_z.update_all(_pos_target.z, curr_alt, _limit.pos_down, _limit.pos_up);
|
|
// add feed forward component
|
|
_vel_target.z += constrain_float(_vel_desired.z, -fabsf(_speed_down_cms), _speed_up_cms);
|
|
|
|
// Velocity Controller
|
|
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
_accel_target.z = _pid_vel_z.update_all(_vel_target.z, curr_vel.z);
|
|
_accel_target.z += _accel_desired.z;
|
|
|
|
// Acceleration Controller
|
|
|
|
// Calculate Earth Frame Z acceleration
|
|
const float z_accel_meas = get_z_accel_cmss();
|
|
|
|
// ensure imax is always large enough to overpower hover throttle
|
|
if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) {
|
|
_pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f);
|
|
}
|
|
float thr_out;
|
|
if (_vibe_comp_enabled) {
|
|
thr_out = get_throttle_with_vibration_override();
|
|
} else {
|
|
thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f;
|
|
thr_out += _pid_accel_z.get_ff() * 0.001f;
|
|
}
|
|
thr_out += _motors.get_throttle_hover();
|
|
|
|
// Actuator commands
|
|
|
|
// send throttle to attitude controller with angle boost
|
|
_attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ);
|
|
|
|
// Check for vertical controller health
|
|
|
|
// _speed_down_cms is checked to be non-zero when set
|
|
float error_ratio = _vel_error.z/_speed_down_cms;
|
|
_vel_z_control_ratio += _dt*0.1f*(0.5-error_ratio);
|
|
_vel_z_control_ratio = constrain_float(_vel_z_control_ratio, 0.0f, 2.0f);
|
|
}
|
|
|
|
// get throttle using vibration-resistant calculation (uses feed forward with manually calculated gain)
|
|
float AC_PosControl::get_throttle_with_vibration_override()
|
|
{
|
|
_accel_desired.z = 0.0f;
|
|
const float thr_per_accelz_cmss = _motors.get_throttle_hover() / (GRAVITY_MSS * 100.0f);
|
|
// during vibration compensation use feed forward with manually calculated gain
|
|
// ToDo: clear pid_info P, I and D terms for logging
|
|
if (!(_motors.limit.throttle_lower || _motors.limit.throttle_upper) || ((is_positive(_pid_accel_z.get_i()) && is_negative(_vel_error.z)) || (is_negative(_pid_accel_z.get_i()) && is_positive(_vel_error.z)))) {
|
|
_pid_accel_z.set_integrator(_pid_accel_z.get_i() + _dt * thr_per_accelz_cmss * 1000.0f * _vel_error.z * _pid_vel_z.kP() * POSCONTROL_VIBE_COMP_I_GAIN);
|
|
}
|
|
return POSCONTROL_VIBE_COMP_P_GAIN * thr_per_accelz_cmss * _accel_target.z + _pid_accel_z.get_i() * 0.001f;
|
|
}
|
|
|
|
|
|
///
|
|
/// lateral position controller
|
|
///
|
|
|
|
/// set_max_accel_xy - set the maximum horizontal acceleration in cm/s/s
|
|
void AC_PosControl::set_max_accel_xy(float accel_cmss)
|
|
{
|
|
// return immediately if no change
|
|
if (is_equal(_accel_cms, accel_cmss)) {
|
|
return;
|
|
}
|
|
_accel_cms = accel_cmss;
|
|
_flags.recalc_leash_xy = true;
|
|
calc_leash_length_xy();
|
|
}
|
|
|
|
/// set_max_speed_xy - set the maximum horizontal speed maximum in cm/s
|
|
void AC_PosControl::set_max_speed_xy(float speed_cms)
|
|
{
|
|
// return immediately if no change in speed
|
|
if (is_equal(_speed_cms, speed_cms)) {
|
|
return;
|
|
}
|
|
|
|
_speed_cms = speed_cms;
|
|
_flags.recalc_leash_xy = true;
|
|
calc_leash_length_xy();
|
|
}
|
|
|
|
/// set_pos_target in cm from home
|
|
void AC_PosControl::set_pos_target(const Vector3f& position)
|
|
{
|
|
_pos_target = position;
|
|
_vel_desired.z = 0.0f;
|
|
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
|
|
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle
|
|
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
|
|
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
|
|
}
|
|
|
|
/// set position, velocity and acceleration targets
|
|
void AC_PosControl::set_pos_vel_accel_target(const Vector3f& pos, const Vector3f& vel, const Vector3f& accel)
|
|
{
|
|
_pos_target = pos;
|
|
_vel_desired = vel;
|
|
_accel_desired = accel;
|
|
}
|
|
|
|
/// set_xy_target in cm from home
|
|
void AC_PosControl::set_xy_target(float x, float y)
|
|
{
|
|
_pos_target.x = x;
|
|
_pos_target.y = y;
|
|
}
|
|
|
|
/// shift position target target in x, y axis
|
|
void AC_PosControl::shift_pos_xy_target(float x_cm, float y_cm)
|
|
{
|
|
// move pos controller target
|
|
_pos_target.x += x_cm;
|
|
_pos_target.y += y_cm;
|
|
}
|
|
|
|
/// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home
|
|
void AC_PosControl::set_target_to_stopping_point_xy()
|
|
{
|
|
// check if xy leash needs to be recalculated
|
|
calc_leash_length_xy();
|
|
|
|
get_stopping_point_xy(_pos_target);
|
|
}
|
|
|
|
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
|
|
/// distance_max allows limiting distance to stopping point
|
|
/// results placed in stopping_position vector
|
|
/// set_max_accel_xy() should be called before this method to set vehicle acceleration
|
|
/// set_leash_length() should have been called before this method
|
|
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const
|
|
{
|
|
const Vector3f curr_pos = _inav.get_position();
|
|
Vector3f curr_vel = _inav.get_velocity();
|
|
float linear_distance; // the distance at which we swap from a linear to sqrt response
|
|
float linear_velocity; // the velocity above which we swap from a linear to sqrt response
|
|
float stopping_dist; // the distance within the vehicle can stop
|
|
float kP = _p_pos_xy.kP();
|
|
|
|
// add velocity error to current velocity
|
|
if (is_active_xy()) {
|
|
curr_vel.x += _vel_error.x;
|
|
curr_vel.y += _vel_error.y;
|
|
}
|
|
|
|
// calculate current velocity
|
|
float vel_total = norm(curr_vel.x, curr_vel.y);
|
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
|
|
if (kP <= 0.0f || _accel_cms <= 0.0f || is_zero(vel_total)) {
|
|
stopping_point.x = curr_pos.x;
|
|
stopping_point.y = curr_pos.y;
|
|
return;
|
|
}
|
|
|
|
// calculate point at which velocity switches from linear to sqrt
|
|
linear_velocity = _accel_cms / kP;
|
|
|
|
// calculate distance within which we can stop
|
|
if (vel_total < linear_velocity) {
|
|
stopping_dist = vel_total / kP;
|
|
} else {
|
|
linear_distance = _accel_cms / (2.0f * kP * kP);
|
|
stopping_dist = linear_distance + (vel_total * vel_total) / (2.0f * _accel_cms);
|
|
}
|
|
|
|
// constrain stopping distance
|
|
stopping_dist = constrain_float(stopping_dist, 0, _leash);
|
|
|
|
// convert the stopping distance into a stopping point using velocity vector
|
|
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total);
|
|
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total);
|
|
}
|
|
|
|
/// get_bearing_to_target - get bearing to target position in centi-degrees
|
|
int32_t AC_PosControl::get_bearing_to_target() const
|
|
{
|
|
return get_bearing_cd(_inav.get_position(), _pos_target);
|
|
}
|
|
|
|
// relax velocity controller by clearing velocity error and setting velocity target to current velocity
|
|
void AC_PosControl::relax_velocity_controller_xy()
|
|
{
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
_vel_target.x = curr_vel.x;
|
|
_vel_target.y = curr_vel.y;
|
|
_vel_error.x = 0.0f;
|
|
_vel_error.y = 0.0f;
|
|
}
|
|
|
|
// is_active_xy - returns true if the xy position controller has been run very recently
|
|
bool AC_PosControl::is_active_xy() const
|
|
{
|
|
return ((AP_HAL::micros64() - _last_update_xy_us) <= POSCONTROL_ACTIVE_TIMEOUT_US);
|
|
}
|
|
|
|
/// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request
|
|
float AC_PosControl::get_lean_angle_max_cd() const
|
|
{
|
|
if (is_zero(_lean_angle_max)) {
|
|
return _attitude_control.lean_angle_max();
|
|
}
|
|
return _lean_angle_max * 100.0f;
|
|
}
|
|
|
|
/// init_xy_controller - initialise the xy controller
|
|
/// this should be called after setting the position target and the desired velocity and acceleration
|
|
/// sets target roll angle, pitch angle and I terms based on vehicle current lean angles
|
|
/// should be called once whenever significant changes to the position target are made
|
|
/// this does not update the xy target
|
|
void AC_PosControl::init_xy_controller()
|
|
{
|
|
// set roll, pitch lean angle targets to current attitude
|
|
const Vector3f &att_target_euler_cd = _attitude_control.get_att_target_euler_cd();
|
|
_roll_target = att_target_euler_cd.x;
|
|
_pitch_target = att_target_euler_cd.y;
|
|
|
|
// initialise I terms from lean angles
|
|
_pid_vel_xy.reset_filter();
|
|
lean_angles_to_accel(_accel_target.x, _accel_target.y);
|
|
_pid_vel_xy.set_integrator(_accel_target - _accel_desired);
|
|
|
|
// flag reset required in rate to accel step
|
|
_flags.reset_desired_vel_to_pos = true;
|
|
_flags.reset_accel_to_lean_xy = true;
|
|
|
|
// initialise ekf xy reset handler
|
|
init_ekf_xy_reset();
|
|
}
|
|
|
|
/// standby_xyz_reset - resets I terms and removes position error
|
|
/// This function will let Loiter and Alt Hold continue to operate
|
|
/// in the event that the flight controller is in control of the
|
|
/// aircraft when in standby.
|
|
void AC_PosControl::standby_xyz_reset()
|
|
{
|
|
// Set _pid_accel_z integrator to zero.
|
|
_pid_accel_z.set_integrator(0.0f);
|
|
|
|
// Set the target position to the current pos.
|
|
_pos_target = _inav.get_position();
|
|
|
|
// Set _pid_vel_xy integrators and derivative to zero.
|
|
_pid_vel_xy.reset_filter();
|
|
|
|
// initialise ekf xy reset handler
|
|
init_ekf_xy_reset();
|
|
}
|
|
|
|
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher
|
|
void AC_PosControl::update_xy_controller()
|
|
{
|
|
// compute dt
|
|
const uint64_t now_us = AP_HAL::micros64();
|
|
float dt = (now_us - _last_update_xy_us) * 1.0e-6f;
|
|
|
|
// sanity check dt
|
|
if (dt >= POSCONTROL_ACTIVE_TIMEOUT_US * 1.0e-6f) {
|
|
dt = 0.0f;
|
|
}
|
|
|
|
// check for ekf xy position reset
|
|
check_for_ekf_xy_reset();
|
|
|
|
// check if xy leash needs to be recalculated
|
|
calc_leash_length_xy();
|
|
|
|
// translate any adjustments from pilot to loiter target
|
|
desired_vel_to_pos(dt);
|
|
|
|
// run horizontal position controller
|
|
run_xy_controller(dt);
|
|
|
|
// update xy update time
|
|
_last_update_xy_us = now_us;
|
|
}
|
|
|
|
float AC_PosControl::time_since_last_xy_update() const
|
|
{
|
|
const uint64_t now_us = AP_HAL::micros64();
|
|
return (now_us - _last_update_xy_us) * 1.0e-6f;
|
|
}
|
|
|
|
// write log to dataflash
|
|
void AC_PosControl::write_log()
|
|
{
|
|
float accel_x, accel_y;
|
|
lean_angles_to_accel(accel_x, accel_y);
|
|
|
|
AP::logger().Write_PSC(get_pos_target(), _inav.get_position(), get_vel_target(), _inav.get_velocity(), get_accel_target(), accel_x, accel_y);
|
|
AP::logger().Write_PSCZ(get_pos_target().z, _inav.get_position().z,
|
|
get_desired_velocity().z, get_vel_target().z, _inav.get_velocity().z,
|
|
_accel_desired.z, get_accel_target().z, get_z_accel_cmss(), _attitude_control.get_throttle_in());
|
|
}
|
|
|
|
/// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller
|
|
void AC_PosControl::init_vel_controller_xyz()
|
|
{
|
|
// set roll, pitch lean angle targets to current attitude
|
|
_roll_target = _ahrs.roll_sensor;
|
|
_pitch_target = _ahrs.pitch_sensor;
|
|
|
|
_pid_vel_xy.reset_filter();
|
|
lean_angles_to_accel(_accel_target.x, _accel_target.y);
|
|
_pid_vel_xy.set_integrator(_accel_target);
|
|
|
|
// flag reset required in rate to accel step
|
|
_flags.reset_desired_vel_to_pos = true;
|
|
_flags.reset_accel_to_lean_xy = true;
|
|
|
|
// set target position
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
set_xy_target(curr_pos.x, curr_pos.y);
|
|
set_alt_target(curr_pos.z);
|
|
|
|
// move current vehicle velocity into feed forward velocity
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
set_desired_velocity(curr_vel);
|
|
|
|
// set vehicle acceleration to zero
|
|
set_desired_accel_xy(0.0f, 0.0f);
|
|
|
|
// initialise ekf reset handlers
|
|
init_ekf_xy_reset();
|
|
init_ekf_z_reset();
|
|
}
|
|
|
|
/// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher
|
|
/// velocity targets should we set using set_desired_velocity_xyz() method
|
|
/// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
|
|
/// throttle targets will be sent directly to the motors
|
|
void AC_PosControl::update_vel_controller_xyz()
|
|
{
|
|
update_xy_controller();
|
|
|
|
// update altitude target
|
|
set_alt_target_from_climb_rate_ff(_vel_desired.z, _dt, false);
|
|
|
|
// run z-axis position controller
|
|
update_z_controller();
|
|
}
|
|
|
|
///
|
|
/// private methods
|
|
///
|
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
|
|
/// should be called whenever the speed, acceleration or position kP is modified
|
|
void AC_PosControl::calc_leash_length_xy()
|
|
{
|
|
// todo: remove _flags.recalc_leash_xy or don't call this function after each variable change.
|
|
if (_flags.recalc_leash_xy) {
|
|
_leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP());
|
|
_flags.recalc_leash_xy = false;
|
|
}
|
|
}
|
|
|
|
/// move velocity target using desired acceleration
|
|
void AC_PosControl::desired_accel_to_vel(float nav_dt)
|
|
{
|
|
// range check nav_dt
|
|
if (nav_dt < 0) {
|
|
return;
|
|
}
|
|
|
|
// update target velocity
|
|
if (_flags.reset_desired_vel_to_pos) {
|
|
_flags.reset_desired_vel_to_pos = false;
|
|
} else {
|
|
_vel_desired.x += _accel_desired.x * nav_dt;
|
|
_vel_desired.y += _accel_desired.y * nav_dt;
|
|
}
|
|
}
|
|
|
|
/// desired_vel_to_pos - move position target using desired velocities
|
|
void AC_PosControl::desired_vel_to_pos(float nav_dt)
|
|
{
|
|
// range check nav_dt
|
|
if (nav_dt < 0) {
|
|
return;
|
|
}
|
|
|
|
// update target position
|
|
if (_flags.reset_desired_vel_to_pos) {
|
|
_flags.reset_desired_vel_to_pos = false;
|
|
} else {
|
|
_pos_target.x += _vel_desired.x * nav_dt;
|
|
_pos_target.y += _vel_desired.y * nav_dt;
|
|
}
|
|
}
|
|
|
|
/// run horizontal position controller correcting position and velocity
|
|
/// converts position (_pos_target) to target velocity (_vel_target)
|
|
/// desired velocity (_vel_desired) is combined into final target velocity
|
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
|
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
|
|
void AC_PosControl::run_xy_controller(float dt)
|
|
{
|
|
float ekfGndSpdLimit, ekfNavVelGainScaler;
|
|
AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
|
|
|
|
// Position Controller
|
|
|
|
const Vector3f &curr_pos = _inav.get_position();
|
|
Vector2f vel_target = _p_pos_xy.update_all(_pos_target.x, _pos_target.y, curr_pos, _leash, _accel_cms);
|
|
|
|
// add velocity feed-forward scaled to compensate for optical flow measurement induced EKF noise
|
|
vel_target *= ekfNavVelGainScaler;
|
|
_vel_target.x = vel_target.x;
|
|
_vel_target.y = vel_target.y;
|
|
// acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise
|
|
_vel_target.x += _vel_desired.x;
|
|
_vel_target.y += _vel_desired.y;
|
|
|
|
// Velocity Controller
|
|
|
|
// check if vehicle velocity is being overridden
|
|
if (_flags.vehicle_horiz_vel_override) {
|
|
_flags.vehicle_horiz_vel_override = false;
|
|
} else {
|
|
_vehicle_horiz_vel.x = _inav.get_velocity().x;
|
|
_vehicle_horiz_vel.y = _inav.get_velocity().y;
|
|
}
|
|
Vector2f accel_target = _pid_vel_xy.update_all(Vector2f{_vel_target.x, _vel_target.y}, _vehicle_horiz_vel, _limit.accel_xy);
|
|
// acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise
|
|
accel_target *= ekfNavVelGainScaler;
|
|
|
|
// reset accel to current desired acceleration
|
|
if (_flags.reset_accel_to_lean_xy) {
|
|
_accel_target_filter.reset(accel_target);
|
|
_flags.reset_accel_to_lean_xy = false;
|
|
}
|
|
|
|
// filter correction acceleration
|
|
_accel_target_filter.set_cutoff_frequency(MIN(_accel_xy_filt_hz, 5.0f * ekfNavVelGainScaler));
|
|
_accel_target_filter.apply(accel_target, dt);
|
|
|
|
// pass the correction acceleration to the target acceleration output
|
|
_accel_target.x = _accel_target_filter.get().x;
|
|
_accel_target.y = _accel_target_filter.get().y;
|
|
|
|
// Add feed forward into the target acceleration output
|
|
_accel_target.x += _accel_desired.x;
|
|
_accel_target.y += _accel_desired.y;
|
|
|
|
// Acceleration Controller
|
|
|
|
// limit acceleration using maximum lean angles
|
|
float angle_max = MIN(_attitude_control.get_althold_lean_angle_max(), get_lean_angle_max_cd());
|
|
float accel_max = MIN(GRAVITY_MSS * 100.0f * tanf(ToRad(angle_max * 0.01f)), POSCONTROL_ACCEL_XY_MAX);
|
|
_limit.accel_xy = _accel_target.limit_length_xy(accel_max);
|
|
|
|
// update angle targets that will be passed to stabilize controller
|
|
accel_to_lean_angles(_accel_target.x, _accel_target.y, _roll_target, _pitch_target);
|
|
}
|
|
|
|
// get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
|
|
void AC_PosControl::accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const
|
|
{
|
|
// rotate accelerations into body forward-right frame
|
|
const float accel_forward = accel_x_cmss * _ahrs.cos_yaw() + accel_y_cmss * _ahrs.sin_yaw();
|
|
const float accel_right = -accel_x_cmss * _ahrs.sin_yaw() + accel_y_cmss * _ahrs.cos_yaw();
|
|
|
|
// update angle targets that will be passed to stabilize controller
|
|
pitch_target = atanf(-accel_forward / (GRAVITY_MSS * 100.0f)) * (18000.0f / M_PI);
|
|
float cos_pitch_target = cosf(pitch_target * M_PI / 18000.0f);
|
|
roll_target = atanf(accel_right * cos_pitch_target / (GRAVITY_MSS * 100.0f)) * (18000.0f / M_PI);
|
|
}
|
|
|
|
// get_lean_angles_to_accel - convert roll, pitch lean target angles to lat/lon frame accelerations in cm/s/s
|
|
void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const
|
|
{
|
|
// rotate our roll, pitch angles into lat/lon frame
|
|
const Vector3f &att_target_euler = _attitude_control.get_att_target_euler_rad();
|
|
const float sin_roll = sinf(att_target_euler.x);
|
|
const float cos_roll = cosf(att_target_euler.x);
|
|
const float sin_pitch = sinf(att_target_euler.y);
|
|
const float cos_pitch = cosf(att_target_euler.y);
|
|
const float sin_yaw = _ahrs.sin_yaw();
|
|
const float cos_yaw = _ahrs.cos_yaw();
|
|
|
|
accel_x_cmss = (GRAVITY_MSS * 100) * (-cos_yaw * sin_pitch * cos_roll - sin_yaw * sin_roll) / MAX(cos_roll * cos_pitch, 0.5f);
|
|
accel_y_cmss = (GRAVITY_MSS * 100) * (-sin_yaw * sin_pitch * cos_roll + cos_yaw * sin_roll) / MAX(cos_roll * cos_pitch, 0.5f);
|
|
}
|
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
|
|
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const
|
|
{
|
|
float leash_length;
|
|
|
|
// sanity check acceleration and avoid divide by zero
|
|
if (accel_cms <= 0.0f) {
|
|
accel_cms = POSCONTROL_ACCELERATION_MIN;
|
|
}
|
|
|
|
// avoid divide by zero
|
|
if (kP <= 0.0f) {
|
|
return POSCONTROL_LEASH_LENGTH_MIN;
|
|
}
|
|
|
|
// calculate leash length
|
|
if (speed_cms <= accel_cms / kP) {
|
|
// linear leash length based on speed close in
|
|
leash_length = speed_cms / kP;
|
|
} else {
|
|
// leash length grows at sqrt of speed further out
|
|
leash_length = (accel_cms / (2.0f * kP * kP)) + (speed_cms * speed_cms / (2.0f * accel_cms));
|
|
}
|
|
|
|
// ensure leash is at least 1m long
|
|
if (leash_length < POSCONTROL_LEASH_LENGTH_MIN) {
|
|
leash_length = POSCONTROL_LEASH_LENGTH_MIN;
|
|
}
|
|
|
|
return leash_length;
|
|
}
|
|
|
|
/// initialise ekf xy position reset check
|
|
void AC_PosControl::init_ekf_xy_reset()
|
|
{
|
|
Vector2f pos_shift;
|
|
_ekf_xy_reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift);
|
|
}
|
|
|
|
/// check for ekf position reset and adjust loiter or brake target position
|
|
void AC_PosControl::check_for_ekf_xy_reset()
|
|
{
|
|
// check for position shift
|
|
Vector2f pos_shift;
|
|
uint32_t reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift);
|
|
if (reset_ms != _ekf_xy_reset_ms) {
|
|
shift_pos_xy_target(pos_shift.x * 100.0f, pos_shift.y * 100.0f);
|
|
_ekf_xy_reset_ms = reset_ms;
|
|
}
|
|
}
|
|
|
|
/// initialise ekf z axis reset check
|
|
void AC_PosControl::init_ekf_z_reset()
|
|
{
|
|
float alt_shift;
|
|
_ekf_z_reset_ms = _ahrs.getLastPosDownReset(alt_shift);
|
|
}
|
|
|
|
/// check for ekf position reset and adjust loiter or brake target position
|
|
void AC_PosControl::check_for_ekf_z_reset()
|
|
{
|
|
// check for position shift
|
|
float alt_shift;
|
|
uint32_t reset_ms = _ahrs.getLastPosDownReset(alt_shift);
|
|
if (reset_ms != 0 && reset_ms != _ekf_z_reset_ms) {
|
|
shift_alt_target(-alt_shift * 100.0f);
|
|
_ekf_z_reset_ms = reset_ms;
|
|
}
|
|
}
|
|
|
|
bool AC_PosControl::pre_arm_checks(const char *param_prefix,
|
|
char *failure_msg,
|
|
const uint8_t failure_msg_len)
|
|
{
|
|
if (!is_positive(get_pos_xy_p().kP())) {
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_POSXY_P must be > 0", param_prefix);
|
|
return false;
|
|
}
|
|
if (!is_positive(get_pos_z_p().kP())) {
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_POSZ_P must be > 0", param_prefix);
|
|
return false;
|
|
}
|
|
if (!is_positive(get_vel_z_pid().kP())) {
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_VELZ_P must be > 0", param_prefix);
|
|
return false;
|
|
}
|
|
if (!is_positive(get_accel_z_pid().kP())) {
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_P must be > 0", param_prefix);
|
|
return false;
|
|
}
|
|
if (!is_positive(get_accel_z_pid().kI())) {
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_I must be > 0", param_prefix);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|