ardupilot/ArduCopter/GCS_Mavlink.cpp
Peter Barker bb12b988f7 Copter: rename ADVANCED_FAILSAFE to AP_COPTER_ADVANCED_FAILSAFE_ENABLED
to make integration with custom build server work
2024-12-12 15:13:40 +11:00

1660 lines
58 KiB
C++

#include "Copter.h"
#include "GCS_Mavlink.h"
#include <AP_RPM/AP_RPM_config.h>
#include <AP_EFI/AP_EFI_config.h>
MAV_TYPE GCS_Copter::frame_type() const
{
/*
for GCS don't give MAV_TYPE_GENERIC as the GCS would have no
information and won't display UIs such as flight mode
selection
*/
#if FRAME_CONFIG == HELI_FRAME
const MAV_TYPE mav_type_default = MAV_TYPE_HELICOPTER;
#else
const MAV_TYPE mav_type_default = MAV_TYPE_QUADROTOR;
#endif
if (copter.motors == nullptr) {
return mav_type_default;
}
MAV_TYPE mav_type = copter.motors->get_frame_mav_type();
if (mav_type == MAV_TYPE_GENERIC) {
mav_type = mav_type_default;
}
return mav_type;
}
MAV_MODE GCS_MAVLINK_Copter::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
if ((copter.pos_control != nullptr) && copter.pos_control->is_active_xy()) {
_base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
// we are armed if we are not initialising
if (copter.motors != nullptr && copter.motors->armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Copter::custom_mode() const
{
return (uint32_t)copter.flightmode->mode_number();
}
MAV_STATE GCS_MAVLINK_Copter::vehicle_system_status() const
{
// set system as critical if any failsafe have triggered
if (copter.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (copter.ap.land_complete) {
return MAV_STATE_STANDBY;
}
if (!copter.ap.initialised) {
return MAV_STATE_BOOT;
}
return MAV_STATE_ACTIVE;
}
void GCS_MAVLINK_Copter::send_attitude_target()
{
const Quaternion quat = copter.attitude_control->get_attitude_target_quat();
const Vector3f ang_vel = copter.attitude_control->get_attitude_target_ang_vel();
const float thrust = copter.attitude_control->get_throttle_in();
const float quat_out[4] {quat.q1, quat.q2, quat.q3, quat.q4};
// Note: When sending out the attitude_target info. we send out all of info. no matter the mavlink typemask
// This way we send out the maximum information that can be used by the sending control systems to adapt their generated trajectories
const uint16_t typemask = 0; // Ignore nothing
mavlink_msg_attitude_target_send(
chan,
AP_HAL::millis(), // time since boot (ms)
typemask, // Bitmask that tells the system what control dimensions should be ignored by the vehicle
quat_out, // Attitude quaternion [w, x, y, z] order, zero-rotation is [1, 0, 0, 0], unit-length
ang_vel.x, // roll rate (rad/s)
ang_vel.y, // pitch rate (rad/s)
ang_vel.z, // yaw rate (rad/s)
thrust); // Collective thrust, normalized to 0 .. 1
}
void GCS_MAVLINK_Copter::send_position_target_global_int()
{
Location target;
if (!copter.flightmode->get_wp(target)) {
return;
}
// convert altitude frame to AMSL (this may use the terrain database)
if (!target.change_alt_frame(Location::AltFrame::ABSOLUTE)) {
return;
}
static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000;
static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE;
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
TYPE_MASK, // ignore everything except the x/y/z components
target.lat, // latitude as 1e7
target.lng, // longitude as 1e7
target.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void GCS_MAVLINK_Copter::send_position_target_local_ned()
{
#if MODE_GUIDED_ENABLED
if (!copter.flightmode->in_guided_mode()) {
return;
}
const ModeGuided::SubMode guided_mode = copter.mode_guided.submode();
Vector3f target_pos;
Vector3f target_vel;
Vector3f target_accel;
uint16_t type_mask = 0;
switch (guided_mode) {
case ModeGuided::SubMode::Angle:
// we don't have a local target when in angle mode
return;
case ModeGuided::SubMode::TakeOff:
case ModeGuided::SubMode::WP:
case ModeGuided::SubMode::Pos:
type_mask = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except position
target_pos = copter.mode_guided.get_target_pos().tofloat() * 0.01; // convert to metres
break;
case ModeGuided::SubMode::PosVelAccel:
type_mask = POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except position, velocity & acceleration
target_pos = copter.mode_guided.get_target_pos().tofloat() * 0.01; // convert to metres
target_vel = copter.mode_guided.get_target_vel() * 0.01f; // convert to metres/s
target_accel = copter.mode_guided.get_target_accel() * 0.01f; // convert to metres/s/s
break;
case ModeGuided::SubMode::VelAccel:
type_mask = POSITION_TARGET_TYPEMASK_X_IGNORE | POSITION_TARGET_TYPEMASK_Y_IGNORE | POSITION_TARGET_TYPEMASK_Z_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except velocity & acceleration
target_vel = copter.mode_guided.get_target_vel() * 0.01f; // convert to metres/s
target_accel = copter.mode_guided.get_target_accel() * 0.01f; // convert to metres/s/s
break;
case ModeGuided::SubMode::Accel:
type_mask = POSITION_TARGET_TYPEMASK_X_IGNORE | POSITION_TARGET_TYPEMASK_Y_IGNORE | POSITION_TARGET_TYPEMASK_Z_IGNORE |
POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except velocity & acceleration
target_accel = copter.mode_guided.get_target_accel() * 0.01f; // convert to metres/s/s
break;
}
mavlink_msg_position_target_local_ned_send(
chan,
AP_HAL::millis(), // time boot ms
MAV_FRAME_LOCAL_NED,
type_mask,
target_pos.x, // x in metres
target_pos.y, // y in metres
-target_pos.z, // z in metres NED frame
target_vel.x, // vx in m/s
target_vel.y, // vy in m/s
-target_vel.z, // vz in m/s NED frame
target_accel.x, // afx in m/s/s
target_accel.y, // afy in m/s/s
-target_accel.z,// afz in m/s/s NED frame
0.0f, // yaw
0.0f); // yaw_rate
#endif
}
void GCS_MAVLINK_Copter::send_nav_controller_output() const
{
if (!copter.ap.initialised) {
return;
}
const Vector3f &targets = copter.attitude_control->get_att_target_euler_cd();
const Mode *flightmode = copter.flightmode;
mavlink_msg_nav_controller_output_send(
chan,
targets.x * 1.0e-2f,
targets.y * 1.0e-2f,
targets.z * 1.0e-2f,
flightmode->wp_bearing() * 1.0e-2f,
MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX),
copter.pos_control->get_pos_error_z_cm() * 1.0e-2f,
0,
flightmode->crosstrack_error() * 1.0e-2f);
}
float GCS_MAVLINK_Copter::vfr_hud_airspeed() const
{
#if AP_AIRSPEED_ENABLED
// airspeed sensors are best. While the AHRS airspeed_estimate
// will use an airspeed sensor, that value is constrained by the
// ground speed. When reporting we should send the true airspeed
// value if possible:
if (copter.airspeed.enabled() && copter.airspeed.healthy()) {
return copter.airspeed.get_airspeed();
}
#endif
Vector3f airspeed_vec_bf;
if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// we are running the EKF3 wind estimation code which can give
// us an airspeed estimate
return airspeed_vec_bf.length();
}
return AP::gps().ground_speed();
}
int16_t GCS_MAVLINK_Copter::vfr_hud_throttle() const
{
if (copter.motors == nullptr) {
return 0;
}
return (int16_t)(copter.motors->get_throttle() * 100);
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Copter::send_pid_tuning()
{
static const PID_TUNING_AXIS axes[] = {
PID_TUNING_ROLL,
PID_TUNING_PITCH,
PID_TUNING_YAW,
PID_TUNING_ACCZ
};
for (uint8_t i=0; i<ARRAY_SIZE(axes); i++) {
if (!(copter.g.gcs_pid_mask & (1<<(axes[i]-1)))) {
continue;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
const AP_PIDInfo *pid_info = nullptr;
switch (axes[i]) {
case PID_TUNING_ROLL:
pid_info = &copter.attitude_control->get_rate_roll_pid().get_pid_info();
break;
case PID_TUNING_PITCH:
pid_info = &copter.attitude_control->get_rate_pitch_pid().get_pid_info();
break;
case PID_TUNING_YAW:
pid_info = &copter.attitude_control->get_rate_yaw_pid().get_pid_info();
break;
case PID_TUNING_ACCZ:
pid_info = &copter.pos_control->get_accel_z_pid().get_pid_info();
break;
default:
continue;
}
if (pid_info != nullptr) {
mavlink_msg_pid_tuning_send(chan,
axes[i],
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
}
}
}
#if AP_WINCH_ENABLED
// send winch status message
void GCS_MAVLINK_Copter::send_winch_status() const
{
AP_Winch *winch = AP::winch();
if (winch == nullptr) {
return;
}
winch->send_status(*this);
}
#endif
uint8_t GCS_MAVLINK_Copter::sysid_my_gcs() const
{
return copter.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Copter::sysid_enforce() const
{
return copter.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Copter::telem_delay() const
{
return (uint32_t)(copter.g.telem_delay);
}
bool GCS_Copter::vehicle_initialised() const {
return copter.ap.initialised;
}
// try to send a message, return false if it wasn't sent
bool GCS_MAVLINK_Copter::try_send_message(enum ap_message id)
{
switch(id) {
#if AP_TERRAIN_AVAILABLE
case MSG_TERRAIN_REQUEST:
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
copter.terrain.send_request(chan);
break;
case MSG_TERRAIN_REPORT:
CHECK_PAYLOAD_SIZE(TERRAIN_REPORT);
copter.terrain.send_report(chan);
break;
#endif
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind();
break;
case MSG_SERVO_OUT:
case MSG_AOA_SSA:
case MSG_LANDING:
// unused
break;
case MSG_ADSB_VEHICLE: {
#if HAL_ADSB_ENABLED
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
copter.adsb.send_adsb_vehicle(chan);
#endif
#if AP_OAPATHPLANNER_ENABLED
AP_OADatabase *oadb = AP_OADatabase::get_singleton();
if (oadb != nullptr) {
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
uint16_t interval_ms = 0;
if (get_ap_message_interval(id, interval_ms)) {
oadb->send_adsb_vehicle(chan, interval_ms);
}
}
#endif
break;
}
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: MAVLink Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and AIRSPEED
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate
// @Description: MAVLink Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW_INT (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, FENCE_STATUS, and GLOBAL_TARGET_POS_INT
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate
// @Description: MAVLink Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Unused
// @Description: Unused
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate
// @Description: MAVLink Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate
// @Description: MAVLink Stream rate of ATTITUDE, SIMSTATE (SIM only), AHRS2 and PID_TUNING
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate
// @Description: MAVLink Stream rate of VFR_HUD
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate
// @Description: MAVLink Stream rate of AHRS, SYSTEM_TIME, WIND, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, TERRAIN_REPORT, BATTERY_STATUS, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION, RPM, ESC TELEMETRY,GENERATOR_STATUS, and WINCH_STATUS
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate
// @Description: MAVLink Stream rate of PARAM_VALUE
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 0),
// @Param: ADSB
// @DisplayName: ADSB stream rate
// @Description: MAVLink ADSB stream rate
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 0),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
#if AP_AIRSPEED_ENABLED
MSG_AIRSPEED,
#endif
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
#if HAL_WITH_MCU_MONITORING
MSG_MCU_STATUS,
#endif
MSG_MEMINFO,
MSG_CURRENT_WAYPOINT, // MISSION_CURRENT
MSG_GPS_RAW,
MSG_GPS_RTK,
#if GPS_MAX_RECEIVERS > 1
MSG_GPS2_RAW,
MSG_GPS2_RTK,
#endif
MSG_NAV_CONTROLLER_OUTPUT,
#if AP_FENCE_ENABLED
MSG_FENCE_STATUS,
#endif
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
#if AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
#endif
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
#if AP_SIM_ENABLED
MSG_SIMSTATE,
#endif
MSG_AHRS2,
MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_SYSTEM_TIME,
MSG_WIND,
#if AP_RANGEFINDER_ENABLED
MSG_RANGEFINDER,
#endif
MSG_DISTANCE_SENSOR,
#if AP_TERRAIN_AVAILABLE
MSG_TERRAIN_REQUEST,
MSG_TERRAIN_REPORT,
#endif
#if AP_BATTERY_ENABLED
MSG_BATTERY_STATUS,
#endif
#if HAL_MOUNT_ENABLED
MSG_GIMBAL_DEVICE_ATTITUDE_STATUS,
#endif
#if AP_OPTICALFLOW_ENABLED
MSG_OPTICAL_FLOW,
#endif
#if COMPASS_CAL_ENABLED
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
#endif
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
#if AP_RPM_ENABLED
MSG_RPM,
#endif
#if HAL_WITH_ESC_TELEM
MSG_ESC_TELEMETRY,
#endif
#if HAL_GENERATOR_ENABLED
MSG_GENERATOR_STATUS,
#endif
#if AP_WINCH_ENABLED
MSG_WINCH_STATUS,
#endif
#if HAL_EFI_ENABLED
MSG_EFI_STATUS,
#endif
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
MSG_ADSB_VEHICLE,
#if AP_AIS_ENABLED
MSG_AIS_VESSEL,
#endif
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_ENTRY(STREAM_PARAMS),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
MISSION_STATE GCS_MAVLINK_Copter::mission_state(const class AP_Mission &mission) const
{
if (copter.mode_auto.paused()) {
return MISSION_STATE_PAUSED;
}
return GCS_MAVLINK::mission_state(mission);
}
bool GCS_MAVLINK_Copter::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
#if MODE_AUTO_ENABLED
return copter.mode_auto.do_guided(cmd);
#else
return false;
#endif
}
void GCS_MAVLINK_Copter::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
// we handle these messages here to avoid them being blocked by mavlink routing code
#if HAL_ADSB_ENABLED
if (copter.g2.dev_options.get() & DevOptionADSBMAVLink) {
// optional handling of GLOBAL_POSITION_INT as a MAVLink based avoidance source
copter.avoidance_adsb.handle_msg(msg);
}
#endif
#if MODE_FOLLOW_ENABLED
// pass message to follow library
copter.g2.follow.handle_msg(msg);
#endif
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Copter::params_ready() const
{
if (AP_BoardConfig::in_config_error()) {
// we may never have parameters "initialised" in this case
return true;
}
// if we have not yet initialised (including allocating the motors
// object) we drop this request. That prevents the GCS from getting
// a confusing parameter count during bootup
return copter.ap.initialised_params;
}
void GCS_MAVLINK_Copter::send_banner()
{
GCS_MAVLINK::send_banner();
if (copter.motors == nullptr) {
send_text(MAV_SEVERITY_INFO, "motors not allocated");
return;
}
char frame_and_type_string[30];
copter.motors->get_frame_and_type_string(frame_and_type_string, ARRAY_SIZE(frame_and_type_string));
send_text(MAV_SEVERITY_INFO, "%s", frame_and_type_string);
}
void GCS_MAVLINK_Copter::handle_command_ack(const mavlink_message_t &msg)
{
copter.command_ack_counter++;
GCS_MAVLINK::handle_command_ack(msg);
}
/*
handle a LANDING_TARGET command. The timestamp has been jitter corrected
*/
void GCS_MAVLINK_Copter::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms)
{
#if AC_PRECLAND_ENABLED
copter.precland.handle_msg(packet, timestamp_ms);
#endif
}
MAV_RESULT GCS_MAVLINK_Copter::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
if (packet.y == 1) {
// compassmot calibration
return copter.mavlink_compassmot(*this);
}
return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg);
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_do_set_roi(const Location &roi_loc)
{
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
copter.flightmode->auto_yaw.set_roi(roi_loc);
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Copter::handle_preflight_reboot(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
// reject reboot if user has also specified they want the "Auto" ESC calibration on next reboot
if (copter.g.esc_calibrate == (uint8_t)Copter::ESCCalibrationModes::ESCCAL_AUTO) {
send_text(MAV_SEVERITY_CRITICAL, "Reboot rejected, ESC cal on reboot");
return MAV_RESULT_FAILED;
}
// call parent
return GCS_MAVLINK::handle_preflight_reboot(packet, msg);
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
#if MODE_GUIDED_ENABLED
const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE;
if (!copter.flightmode->in_guided_mode() && !change_modes) {
return MAV_RESULT_DENIED;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_DENIED;
}
Location request_location;
if (!location_from_command_t(packet, request_location)) {
return MAV_RESULT_DENIED;
}
if (request_location.sanitize(copter.current_loc)) {
// if the location wasn't already sane don't load it
return MAV_RESULT_DENIED; // failed as the location is not valid
}
// we need to do this first, as we don't want to change the flight mode unless we can also set the target
if (!copter.mode_guided.set_destination(request_location, false, 0, false, 0)) {
return MAV_RESULT_FAILED;
}
if (!copter.flightmode->in_guided_mode()) {
if (!copter.set_mode(Mode::Number::GUIDED, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
// the position won't have been loaded if we had to change the flight mode, so load it again
if (!copter.mode_guided.set_destination(request_location, false, 0, false, 0)) {
return MAV_RESULT_FAILED;
}
}
return MAV_RESULT_ACCEPTED;
#else
return MAV_RESULT_UNSUPPORTED;
#endif
}
MAV_RESULT GCS_MAVLINK_Copter::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch(packet.command) {
case MAV_CMD_CONDITION_YAW:
return handle_MAV_CMD_CONDITION_YAW(packet);
case MAV_CMD_DO_CHANGE_SPEED:
return handle_MAV_CMD_DO_CHANGE_SPEED(packet);
#if MODE_FOLLOW_ENABLED
case MAV_CMD_DO_FOLLOW:
// param1: sysid of target to follow
if ((packet.param1 > 0) && (packet.param1 <= 255)) {
copter.g2.follow.set_target_sysid((uint8_t)packet.param1);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_DENIED;
#endif
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
// pause or resume an auto mission
case MAV_CMD_DO_PAUSE_CONTINUE:
return handle_command_pause_continue(packet);
case MAV_CMD_DO_MOTOR_TEST:
return handle_MAV_CMD_DO_MOTOR_TEST(packet);
case MAV_CMD_NAV_TAKEOFF:
case MAV_CMD_NAV_VTOL_TAKEOFF:
return handle_MAV_CMD_NAV_TAKEOFF(packet);
#if HAL_PARACHUTE_ENABLED
case MAV_CMD_DO_PARACHUTE:
return handle_MAV_CMD_DO_PARACHUTE(packet);
#endif
#if AC_MAVLINK_SOLO_BUTTON_COMMAND_HANDLING_ENABLED
// Solo user presses pause button
case MAV_CMD_SOLO_BTN_PAUSE_CLICK:
return handle_MAV_CMD_SOLO_BTN_PAUSE_CLICK(packet);
// Solo user presses Fly button:
case MAV_CMD_SOLO_BTN_FLY_HOLD:
return handle_MAV_CMD_SOLO_BTN_FLY_HOLD(packet);
// Solo user holds down Fly button for a couple of seconds
case MAV_CMD_SOLO_BTN_FLY_CLICK:
return handle_MAV_CMD_SOLO_BTN_FLY_CLICK(packet);
#endif
#if MODE_AUTO_ENABLED
case MAV_CMD_MISSION_START:
return handle_MAV_CMD_MISSION_START(packet);
#endif
#if AP_WINCH_ENABLED
case MAV_CMD_DO_WINCH:
return handle_MAV_CMD_DO_WINCH(packet);
#endif
case MAV_CMD_NAV_LOITER_UNLIM:
if (!copter.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (!copter.set_mode(Mode::Number::RTL, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_VTOL_LAND:
case MAV_CMD_NAV_LAND:
if (!copter.set_mode(Mode::Number::LAND, ModeReason::GCS_COMMAND)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
#if MODE_AUTO_ENABLED
case MAV_CMD_DO_RETURN_PATH_START:
if (copter.mode_auto.return_path_start_auto_RTL(ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_DO_LAND_START:
if (copter.mode_auto.jump_to_landing_sequence_auto_RTL(ModeReason::GCS_COMMAND)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#endif
default:
return GCS_MAVLINK::handle_command_int_packet(packet, msg);
}
}
#if HAL_MOUNT_ENABLED
MAV_RESULT GCS_MAVLINK_Copter::handle_command_mount(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch (packet.command) {
case MAV_CMD_DO_MOUNT_CONTROL:
// if vehicle has a camera mount but it doesn't do pan control then yaw the entire vehicle instead
if (((MAV_MOUNT_MODE)packet.z == MAV_MOUNT_MODE_MAVLINK_TARGETING) &&
(copter.camera_mount.get_mount_type() != AP_Mount::Type::None) &&
!copter.camera_mount.has_pan_control()) {
// Per the handler in AP_Mount, DO_MOUNT_CONTROL yaw angle is in body frame, which is
// equivalent to an offset to the current yaw demand.
copter.flightmode->auto_yaw.set_yaw_angle_offset(packet.param3);
}
break;
default:
break;
}
return GCS_MAVLINK::handle_command_mount(packet, msg);
}
#endif
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_NAV_TAKEOFF(const mavlink_command_int_t &packet)
{
if (packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT) {
return MAV_RESULT_DENIED; // meaning some parameters are bad
}
// param3 : horizontal navigation by pilot acceptable
// param4 : yaw angle (not supported)
// param5 : latitude (not supported)
// param6 : longitude (not supported)
// param7 : altitude [metres]
float takeoff_alt = packet.z * 100; // Convert m to cm
if (!copter.flightmode->do_user_takeoff(takeoff_alt, is_zero(packet.param3))) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#if AP_MAVLINK_COMMAND_LONG_ENABLED
bool GCS_MAVLINK_Copter::mav_frame_for_command_long(MAV_FRAME &frame, MAV_CMD packet_command) const
{
if (packet_command == MAV_CMD_NAV_TAKEOFF ||
packet_command == MAV_CMD_NAV_VTOL_TAKEOFF) {
frame = MAV_FRAME_GLOBAL_RELATIVE_ALT;
return true;
}
return GCS_MAVLINK::mav_frame_for_command_long(frame, packet_command);
}
#endif
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_CONDITION_YAW(const mavlink_command_int_t &packet)
{
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
copter.flightmode->auto_yaw.set_fixed_yaw(
packet.param1,
packet.param2,
(int8_t)packet.param3,
is_positive(packet.param4));
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_DO_CHANGE_SPEED(const mavlink_command_int_t &packet)
{
// param1 : Speed type (0 or 1=Ground Speed, 2=Climb Speed, 3=Descent Speed)
// param2 : new speed in m/s
// param3 : unused
// param4 : unused
if (packet.param2 > 0.0f) {
if (packet.param1 > 2.9f) { // 3 = speed down
if (copter.flightmode->set_speed_down(packet.param2 * 100.0f)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
} else if (packet.param1 > 1.9f) { // 2 = speed up
if (copter.flightmode->set_speed_up(packet.param2 * 100.0f)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
} else {
if (copter.flightmode->set_speed_xy(packet.param2 * 100.0f)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
}
return MAV_RESULT_FAILED;
}
#if MODE_AUTO_ENABLED
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_MISSION_START(const mavlink_command_int_t &packet)
{
if (!is_zero(packet.param1) || !is_zero(packet.param2)) {
// first-item/last item not supported
return MAV_RESULT_DENIED;
}
if (copter.set_mode(Mode::Number::AUTO, ModeReason::GCS_COMMAND)) {
copter.set_auto_armed(true);
if (copter.mode_auto.mission.state() != AP_Mission::MISSION_RUNNING) {
copter.mode_auto.mission.start_or_resume();
}
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
#endif
#if HAL_PARACHUTE_ENABLED
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_DO_PARACHUTE(const mavlink_command_int_t &packet)
{
// configure or release parachute
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
copter.parachute.enabled(false);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_ENABLE:
copter.parachute.enabled(true);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
copter.parachute_manual_release();
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
#endif
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_DO_MOTOR_TEST(const mavlink_command_int_t &packet)
{
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : num_motors (in sequence)
// param6 : motor test order
return copter.mavlink_motor_test_start(*this,
(uint8_t)packet.param1,
(uint8_t)packet.param2,
packet.param3,
packet.param4,
(uint8_t)packet.x);
}
#if AP_WINCH_ENABLED
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_DO_WINCH(const mavlink_command_int_t &packet)
{
// param1 : winch number (ignored)
// param2 : action (0=relax, 1=relative length control, 2=rate control). See WINCH_ACTIONS enum.
if (!copter.g2.winch.enabled()) {
return MAV_RESULT_FAILED;
}
switch ((uint8_t)packet.param2) {
case WINCH_RELAXED:
copter.g2.winch.relax();
return MAV_RESULT_ACCEPTED;
case WINCH_RELATIVE_LENGTH_CONTROL: {
copter.g2.winch.release_length(packet.param3);
return MAV_RESULT_ACCEPTED;
}
case WINCH_RATE_CONTROL:
copter.g2.winch.set_desired_rate(packet.param4);
return MAV_RESULT_ACCEPTED;
default:
break;
}
return MAV_RESULT_FAILED;
}
#endif // AP_WINCH_ENABLED
#if AC_MAVLINK_SOLO_BUTTON_COMMAND_HANDLING_ENABLED
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_SOLO_BTN_FLY_CLICK(const mavlink_command_int_t &packet)
{
if (copter.failsafe.radio) {
return MAV_RESULT_ACCEPTED;
}
// set mode to Loiter or fall back to AltHold
if (!copter.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) {
copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::GCS_COMMAND);
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_SOLO_BTN_FLY_HOLD(const mavlink_command_int_t &packet)
{
if (copter.failsafe.radio) {
return MAV_RESULT_ACCEPTED;
}
if (!copter.motors->armed()) {
// if disarmed, arm motors
copter.arming.arm(AP_Arming::Method::MAVLINK);
} else if (copter.ap.land_complete) {
// if armed and landed, takeoff
if (copter.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) {
copter.flightmode->do_user_takeoff(packet.param1*100, true);
}
} else {
// if flying, land
copter.set_mode(Mode::Number::LAND, ModeReason::GCS_COMMAND);
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Copter::handle_MAV_CMD_SOLO_BTN_PAUSE_CLICK(const mavlink_command_int_t &packet)
{
if (copter.failsafe.radio) {
return MAV_RESULT_ACCEPTED;
}
if (copter.motors->armed()) {
if (copter.ap.land_complete) {
// if landed, disarm motors
copter.arming.disarm(AP_Arming::Method::SOLOPAUSEWHENLANDED);
} else {
// assume that shots modes are all done in guided.
// NOTE: this may need to change if we add a non-guided shot mode
bool shot_mode = (!is_zero(packet.param1) && (copter.flightmode->mode_number() == Mode::Number::GUIDED || copter.flightmode->mode_number() == Mode::Number::GUIDED_NOGPS));
if (!shot_mode) {
#if MODE_BRAKE_ENABLED
if (copter.set_mode(Mode::Number::BRAKE, ModeReason::GCS_COMMAND)) {
copter.mode_brake.timeout_to_loiter_ms(2500);
} else {
copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::GCS_COMMAND);
}
#else
copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::GCS_COMMAND);
#endif
} else {
// SoloLink is expected to handle pause in shots
}
}
}
return MAV_RESULT_ACCEPTED;
}
#endif // AC_MAVLINK_SOLO_BUTTON_COMMAND_HANDLING_ENABLED
MAV_RESULT GCS_MAVLINK_Copter::handle_command_pause_continue(const mavlink_command_int_t &packet)
{
// requested pause
if ((uint8_t) packet.param1 == 0) {
if (copter.flightmode->pause()) {
return MAV_RESULT_ACCEPTED;
}
send_text(MAV_SEVERITY_INFO, "Failed to pause");
return MAV_RESULT_FAILED;
}
// requested resume
if ((uint8_t) packet.param1 == 1) {
if (copter.flightmode->resume()) {
return MAV_RESULT_ACCEPTED;
}
send_text(MAV_SEVERITY_INFO, "Failed to resume");
return MAV_RESULT_FAILED;
}
return MAV_RESULT_DENIED;
}
#if HAL_MOUNT_ENABLED
void GCS_MAVLINK_Copter::handle_mount_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_MOUNT_CONTROL:
// if vehicle has a camera mount but it doesn't do pan control then yaw the entire vehicle instead
if ((copter.camera_mount.get_mount_type() != AP_Mount::Type::None) &&
(copter.camera_mount.get_mode() == MAV_MOUNT_MODE_MAVLINK_TARGETING) &&
!copter.camera_mount.has_pan_control()) {
// Per the handler in AP_Mount, MOUNT_CONTROL yaw angle is in body frame, which is
// equivalent to an offset to the current yaw demand.
const float yaw_offset_d = mavlink_msg_mount_control_get_input_c(&msg) * 0.01f;
copter.flightmode->auto_yaw.set_yaw_angle_offset(yaw_offset_d);
break;
}
}
GCS_MAVLINK::handle_mount_message(msg);
}
#endif
// this is called on receipt of a MANUAL_CONTROL packet and is
// expected to call manual_override to override RC input on desired
// axes.
void GCS_MAVLINK_Copter::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow)
{
if (packet.z < 0) { // Copter doesn't do negative thrust
return;
}
manual_override(copter.channel_roll, packet.y, 1000, 2000, tnow);
manual_override(copter.channel_pitch, packet.x, 1000, 2000, tnow, true);
manual_override(copter.channel_throttle, packet.z, 0, 1000, tnow);
manual_override(copter.channel_yaw, packet.r, 1000, 2000, tnow);
}
// sanity check velocity or acceleration vector components are numbers
// (e.g. not NaN) and below 1000. vec argument units are in meters/second or
// metres/second/second
bool GCS_MAVLINK_Copter::sane_vel_or_acc_vector(const Vector3f &vec) const
{
for (uint8_t i=0; i<3; i++) {
// consider velocity invalid if any component nan or >1000(m/s or m/s/s)
if (isnan(vec[i]) || fabsf(vec[i]) > 1000) {
return false;
}
}
return true;
}
#if MODE_GUIDED_ENABLED
// for mavlink SET_POSITION_TARGET messages
constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE =
POSITION_TARGET_TYPEMASK_X_IGNORE |
POSITION_TARGET_TYPEMASK_Y_IGNORE |
POSITION_TARGET_TYPEMASK_Z_IGNORE;
constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE =
POSITION_TARGET_TYPEMASK_VX_IGNORE |
POSITION_TARGET_TYPEMASK_VY_IGNORE |
POSITION_TARGET_TYPEMASK_VZ_IGNORE;
constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE =
POSITION_TARGET_TYPEMASK_AX_IGNORE |
POSITION_TARGET_TYPEMASK_AY_IGNORE |
POSITION_TARGET_TYPEMASK_AZ_IGNORE;
constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE =
POSITION_TARGET_TYPEMASK_YAW_IGNORE;
constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE =
POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE;
constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_FORCE_SET =
POSITION_TARGET_TYPEMASK_FORCE_SET;
#endif
#if MODE_GUIDED_ENABLED
void GCS_MAVLINK_Copter::handle_message_set_attitude_target(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if (!copter.flightmode->in_guided_mode()) {
return;
}
const bool roll_rate_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_BODY_ROLL_RATE_IGNORE;
const bool pitch_rate_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_BODY_PITCH_RATE_IGNORE;
const bool yaw_rate_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_BODY_YAW_RATE_IGNORE;
const bool throttle_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_THROTTLE_IGNORE;
const bool attitude_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_ATTITUDE_IGNORE;
// ensure thrust field is not ignored
if (throttle_ignore) {
// The throttle input is not defined
return;
}
Quaternion attitude_quat;
if (attitude_ignore) {
attitude_quat.zero();
} else {
attitude_quat = Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]);
// Do not accept the attitude_quaternion
// if its magnitude is not close to unit length +/- 1E-3
// this limit is somewhat greater than sqrt(FLT_EPSL)
if (!attitude_quat.is_unit_length()) {
// The attitude quaternion is ill-defined
return;
}
}
Vector3f ang_vel_body;
if (!roll_rate_ignore && !pitch_rate_ignore && !yaw_rate_ignore) {
ang_vel_body.x = packet.body_roll_rate;
ang_vel_body.y = packet.body_pitch_rate;
ang_vel_body.z = packet.body_yaw_rate;
} else if (!(roll_rate_ignore && pitch_rate_ignore && yaw_rate_ignore)) {
// The body rates are ill-defined
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
// check if the message's thrust field should be interpreted as a climb rate or as thrust
const bool use_thrust = copter.mode_guided.set_attitude_target_provides_thrust();
float climb_rate_or_thrust;
if (use_thrust) {
// interpret thrust as thrust
climb_rate_or_thrust = constrain_float(packet.thrust, -1.0f, 1.0f);
} else {
// convert thrust to climb rate
packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f);
if (is_equal(packet.thrust, 0.5f)) {
climb_rate_or_thrust = 0.0f;
} else if (packet.thrust > 0.5f) {
// climb at up to WPNAV_SPEED_UP
climb_rate_or_thrust = (packet.thrust - 0.5f) * 2.0f * copter.wp_nav->get_default_speed_up();
} else {
// descend at up to WPNAV_SPEED_DN
climb_rate_or_thrust = (0.5f - packet.thrust) * 2.0f * -copter.wp_nav->get_default_speed_down();
}
}
copter.mode_guided.set_angle(attitude_quat, ang_vel_body,
climb_rate_or_thrust, use_thrust);
}
void GCS_MAVLINK_Copter::handle_message_set_position_target_local_ned(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if (!copter.flightmode->in_guided_mode()) {
return;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
bool force_set = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE_SET;
// Force inputs are not supported
// Do not accept command if force_set is true and acc_ignore is false
if (force_set && !acc_ignore) {
return;
}
// prepare position
Vector3f pos_vector;
if (!pos_ignore) {
// convert to cm
pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y);
}
// add body offset if necessary
if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
pos_vector += copter.inertial_nav.get_position_neu_cm();
}
}
// prepare velocity
Vector3f vel_vector;
if (!vel_ignore) {
vel_vector = Vector3f{packet.vx, packet.vy, -packet.vz};
if (!sane_vel_or_acc_vector(vel_vector)) {
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
vel_vector *= 100; // m/s -> cm/s
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y);
}
}
// prepare acceleration
Vector3f accel_vector;
if (!acc_ignore) {
// convert to cm
accel_vector = Vector3f(packet.afx * 100.0f, packet.afy * 100.0f, -packet.afz * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(accel_vector.x, accel_vector.y);
}
}
// prepare yaw
float yaw_cd = 0.0f;
bool yaw_relative = false;
float yaw_rate_cds = 0.0f;
if (!yaw_ignore) {
yaw_cd = ToDeg(packet.yaw) * 100.0f;
yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
}
if (!yaw_rate_ignore) {
yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// send request
if (!pos_ignore && !vel_ignore) {
copter.mode_guided.set_destination_posvelaccel(pos_vector, vel_vector, accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (pos_ignore && !vel_ignore) {
copter.mode_guided.set_velaccel(vel_vector, accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (pos_ignore && vel_ignore && !acc_ignore) {
copter.mode_guided.set_accel(accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
} else if (!pos_ignore && vel_ignore && acc_ignore) {
copter.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative, false);
} else {
// input is not valid so stop
copter.mode_guided.init(true);
}
}
void GCS_MAVLINK_Copter::handle_message_set_position_target_global_int(const mavlink_message_t &msg)
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(&msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if (!copter.flightmode->in_guided_mode()) {
return;
}
// todo: do we need to check for supported coordinate frames
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
bool force_set = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE_SET;
// Force inputs are not supported
// Do not accept command if force_set is true and acc_ignore is false
if (force_set && !acc_ignore) {
return;
}
// extract location from message
Location loc;
if (!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
Location::AltFrame frame;
if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) {
// unknown coordinate frame
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
loc = {packet.lat_int, packet.lon_int, int32_t(packet.alt*100), frame};
}
// prepare velocity
Vector3f vel_vector;
if (!vel_ignore) {
vel_vector = Vector3f{packet.vx, packet.vy, -packet.vz};
if (!sane_vel_or_acc_vector(vel_vector)) {
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
vel_vector *= 100; // m/s -> cm/s
}
// prepare acceleration
Vector3f accel_vector;
if (!acc_ignore) {
// convert to cm
accel_vector = Vector3f(packet.afx * 100.0f, packet.afy * 100.0f, -packet.afz * 100.0f);
}
// prepare yaw
float yaw_cd = 0.0f;
float yaw_rate_cds = 0.0f;
if (!yaw_ignore) {
yaw_cd = ToDeg(packet.yaw) * 100.0f;
}
if (!yaw_rate_ignore) {
yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// send targets to the appropriate guided mode controller
if (!pos_ignore && !vel_ignore) {
// convert Location to vector from ekf origin for posvel controller
if (loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) {
// posvel controller does not support alt-above-terrain
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
Vector3f pos_neu_cm;
if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) {
// input is not valid so stop
copter.mode_guided.init(true);
return;
}
copter.mode_guided.set_destination_posvel(pos_neu_cm, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds);
} else if (pos_ignore && !vel_ignore) {
copter.mode_guided.set_velaccel(vel_vector, accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds);
} else if (pos_ignore && vel_ignore && !acc_ignore) {
copter.mode_guided.set_accel(accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds);
} else if (!pos_ignore && vel_ignore && acc_ignore) {
copter.mode_guided.set_destination(loc, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds);
} else {
// input is not valid so stop
copter.mode_guided.init(true);
}
}
#endif // MODE_GUIDED_ENABLED
void GCS_MAVLINK_Copter::handle_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
#if MODE_GUIDED_ENABLED
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
handle_message_set_attitude_target(msg);
break;
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
handle_message_set_position_target_local_ned(msg);
break;
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
handle_message_set_position_target_global_int(msg);
break;
#endif
#if AP_TERRAIN_AVAILABLE
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
copter.terrain.handle_data(chan, msg);
break;
#endif
#if TOY_MODE_ENABLED
case MAVLINK_MSG_ID_NAMED_VALUE_INT:
copter.g2.toy_mode.handle_message(msg);
break;
#endif
default:
GCS_MAVLINK::handle_message(msg);
break;
}
}
MAV_RESULT GCS_MAVLINK_Copter::handle_flight_termination(const mavlink_command_int_t &packet) {
#if AP_COPTER_ADVANCED_FAILSAFE_ENABLED
if (GCS_MAVLINK::handle_flight_termination(packet) == MAV_RESULT_ACCEPTED) {
return MAV_RESULT_ACCEPTED;
}
#endif
if (packet.param1 > 0.5f) {
copter.arming.disarm(AP_Arming::Method::TERMINATION);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
float GCS_MAVLINK_Copter::vfr_hud_alt() const
{
if (copter.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) {
// compatibility option for older mavlink-aware devices that
// assume Copter returns a relative altitude in VFR_HUD.alt
return copter.current_loc.alt * 0.01f;
}
return GCS_MAVLINK::vfr_hud_alt();
}
uint64_t GCS_MAVLINK_Copter::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
#if AP_TERRAIN_AVAILABLE
(copter.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) |
#endif
GCS_MAVLINK::capabilities());
}
MAV_LANDED_STATE GCS_MAVLINK_Copter::landed_state() const
{
if (copter.ap.land_complete) {
return MAV_LANDED_STATE_ON_GROUND;
}
if (copter.flightmode->is_landing()) {
return MAV_LANDED_STATE_LANDING;
}
if (copter.flightmode->is_taking_off()) {
return MAV_LANDED_STATE_TAKEOFF;
}
return MAV_LANDED_STATE_IN_AIR;
}
void GCS_MAVLINK_Copter::send_wind() const
{
Vector3f airspeed_vec_bf;
if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// if we don't have an airspeed estimate then we don't have a
// valid wind estimate on copters
return;
}
const Vector3f wind = AP::ahrs().wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)),
wind.length(),
wind.z);
}
#if HAL_HIGH_LATENCY2_ENABLED
int16_t GCS_MAVLINK_Copter::high_latency_target_altitude() const
{
AP_AHRS &ahrs = AP::ahrs();
Location global_position_current;
UNUSED_RESULT(ahrs.get_location(global_position_current));
//return units are m
if (copter.ap.initialised) {
return 0.01 * (global_position_current.alt + copter.pos_control->get_pos_error_z_cm());
}
return 0;
}
uint8_t GCS_MAVLINK_Copter::high_latency_tgt_heading() const
{
if (copter.ap.initialised) {
// return units are deg/2
const Mode *flightmode = copter.flightmode;
// need to convert -18000->18000 to 0->360/2
return wrap_360_cd(flightmode->wp_bearing()) / 200;
}
return 0;
}
uint16_t GCS_MAVLINK_Copter::high_latency_tgt_dist() const
{
if (copter.ap.initialised) {
// return units are dm
const Mode *flightmode = copter.flightmode;
return MIN(flightmode->wp_distance() * 1.0e-2, UINT16_MAX) / 10;
}
return 0;
}
uint8_t GCS_MAVLINK_Copter::high_latency_tgt_airspeed() const
{
if (copter.ap.initialised) {
// return units are m/s*5
return MIN(copter.pos_control->get_vel_target_cms().length() * 5.0e-2, UINT8_MAX);
}
return 0;
}
uint8_t GCS_MAVLINK_Copter::high_latency_wind_speed() const
{
Vector3f airspeed_vec_bf;
Vector3f wind;
// return units are m/s*5
if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
wind = AP::ahrs().wind_estimate();
return wind.length() * 5;
}
return 0;
}
uint8_t GCS_MAVLINK_Copter::high_latency_wind_direction() const
{
Vector3f airspeed_vec_bf;
Vector3f wind;
// return units are deg/2
if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
wind = AP::ahrs().wind_estimate();
// need to convert -180->180 to 0->360/2
return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2;
}
return 0;
}
#endif // HAL_HIGH_LATENCY2_ENABLED