ardupilot/ArduPlane/test.pde

599 lines
17 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
static int8_t test_passthru(uint8_t argc, const Menu::arg *argv);
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
#endif
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv);
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv);
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
static int8_t test_shell(uint8_t argc, const Menu::arg *argv);
#endif
// forward declaration to keep the compiler happy
static void test_wp_print(const AP_Mission::Mission_Command& cmd);
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Common for implementation details
static const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
{"passthru", test_passthru},
{"failsafe", test_failsafe},
{"relay", test_relay},
{"waypoints", test_wp},
{"xbee", test_xbee},
{"modeswitch", test_modeswitch},
// Tests below here are for hardware sensors only present
// when real sensors are attached or they are emulated
#if HIL_MODE == HIL_MODE_DISABLED
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
{"adc", test_adc},
#endif
{"gps", test_gps},
{"ins", test_ins},
{"airspeed", test_airspeed},
{"airpressure", test_pressure},
{"compass", test_mag},
#else
{"gps", test_gps},
{"ins", test_ins},
{"compass", test_mag},
#endif
{"logging", test_logging},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
{"shell", test_shell},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
return 0;
}
static void print_hit_enter()
{
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n"));
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
while(1) {
hal.scheduler->delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
(int)channel_roll->radio_in,
(int)channel_pitch->radio_in,
(int)channel_throttle->radio_in,
(int)channel_rudder->radio_in,
(int)g.rc_5.radio_in,
(int)g.rc_6.radio_in,
(int)g.rc_7.radio_in,
(int)g.rc_8.radio_in);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_passthru(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
while(1) {
hal.scheduler->delay(20);
// New radio frame? (we could use also if((millis()- timer) > 20)
if (hal.rcin->new_input()) {
cliSerial->print_P(PSTR("CH:"));
for(int16_t i = 0; i < 8; i++) {
cliSerial->print(hal.rcin->read(i)); // Print channel values
print_comma();
servo_write(i, hal.rcin->read(i)); // Copy input to Servos
}
cliSerial->println();
}
if (cliSerial->available() > 0) {
return (0);
}
}
return 0;
}
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
// read the radio to set trims
// ---------------------------
trim_radio();
while(1) {
hal.scheduler->delay(20);
read_radio();
channel_roll->calc_pwm();
channel_pitch->calc_pwm();
channel_throttle->calc_pwm();
channel_rudder->calc_pwm();
// write out the servo PWM values
// ------------------------------
set_servos();
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
(int)channel_roll->control_in,
(int)channel_pitch->control_in,
(int)channel_throttle->control_in,
(int)channel_rudder->control_in,
(int)g.rc_5.control_in,
(int)g.rc_6.control_in,
(int)g.rc_7.control_in,
(int)g.rc_8.control_in);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{
uint8_t fail_test;
print_hit_enter();
for(int16_t i = 0; i < 50; i++) {
hal.scheduler->delay(20);
read_radio();
}
// read the radio to set trims
// ---------------------------
trim_radio();
oldSwitchPosition = readSwitch();
cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
while(channel_throttle->control_in > 0) {
hal.scheduler->delay(20);
read_radio();
}
while(1) {
hal.scheduler->delay(20);
read_radio();
if(channel_throttle->control_in > 0) {
cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), (int)channel_throttle->control_in);
fail_test++;
}
if(oldSwitchPosition != readSwitch()) {
cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: "));
print_flight_mode(cliSerial, readSwitch());
cliSerial->println();
fail_test++;
}
if(g.throttle_fs_enabled && channel_throttle->get_failsafe()) {
cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), (int)channel_throttle->radio_in);
print_flight_mode(cliSerial, readSwitch());
cliSerial->println();
fail_test++;
}
if(fail_test > 0) {
return (0);
}
if(cliSerial->available() > 0) {
cliSerial->printf_P(PSTR("LOS caused no change in APM.\n"));
return (0);
}
}
}
static int8_t
test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
while(1) {
cliSerial->printf_P(PSTR("Relay on\n"));
relay.on(0);
hal.scheduler->delay(3000);
if(cliSerial->available() > 0) {
return (0);
}
cliSerial->printf_P(PSTR("Relay off\n"));
relay.off(0);
hal.scheduler->delay(3000);
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->delay(1000);
// save the alitude above home option
if (g.RTL_altitude_cm < 0) {
cliSerial->printf_P(PSTR("Hold current altitude\n"));
}else{
cliSerial->printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude_cm/100);
}
cliSerial->printf_P(PSTR("%d waypoints\n"), (int)mission.num_commands());
cliSerial->printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
cliSerial->printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
for(uint8_t i = 0; i <= mission.num_commands(); i++) {
AP_Mission::Mission_Command temp_cmd;
if (mission.read_cmd_from_storage(i,temp_cmd)) {
test_wp_print(temp_cmd);
}
}
return (0);
}
static void
test_wp_print(const AP_Mission::Mission_Command& cmd)
{
cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
(int)cmd.index,
(int)cmd.id,
(int)cmd.content.location.options,
(int)cmd.p1,
(long)cmd.content.location.alt,
(long)cmd.content.location.lat,
(long)cmd.content.location.lng);
}
static int8_t
test_xbee(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
cliSerial->printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
while(1) {
if (hal.uartC->available())
hal.uartC->write(hal.uartC->read());
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_modeswitch(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
cliSerial->printf_P(PSTR("Control CH "));
cliSerial->println(FLIGHT_MODE_CHANNEL, BASE_DEC);
while(1) {
hal.scheduler->delay(20);
uint8_t switchPosition = readSwitch();
if (oldSwitchPosition != switchPosition) {
cliSerial->printf_P(PSTR("Position %d\n"), (int)switchPosition);
oldSwitchPosition = switchPosition;
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
/*
* test the dataflash is working
*/
static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
DataFlash.ShowDeviceInfo(cliSerial);
return 0;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
/*
* run a debug shell
*/
static int8_t
test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
//-------------------------------------------------------------------------------------------
// tests in this section are for real sensors or sensors that have been simulated
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
static int8_t
test_adc(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
apm1_adc.Init();
hal.scheduler->delay(1000);
cliSerial->printf_P(PSTR("ADC\n"));
hal.scheduler->delay(1000);
while(1) {
for (int8_t i=0; i<9; i++) cliSerial->printf_P(PSTR("%.1f\t"),apm1_adc.Ch(i));
cliSerial->println();
hal.scheduler->delay(100);
if(cliSerial->available() > 0) {
return (0);
}
}
}
#endif
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
uint32_t last_message_time_ms = 0;
while(1) {
hal.scheduler->delay(100);
gps.update();
if (gps.last_message_time_ms() != last_message_time_ms) {
last_message_time_ms = gps.last_message_time_ms();
const Location &loc = gps.location();
cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
(long)loc.lat,
(long)loc.lng,
(long)loc.alt/100,
(int)gps.num_sats());
} else {
cliSerial->printf_P(PSTR("."));
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
//cliSerial->printf_P(PSTR("Calibrating."));
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate);
ahrs.reset();
print_hit_enter();
hal.scheduler->delay(1000);
uint8_t counter = 0;
while(1) {
hal.scheduler->delay(20);
if (hal.scheduler->micros() - fast_loopTimer_us > 19000UL) {
fast_loopTimer_us = hal.scheduler->micros();
// INS
// ---
ahrs.update();
if(g.compass_enabled) {
counter++;
if(counter == 5) {
compass.read();
counter = 0;
}
}
// We are using the INS
// ---------------------
Vector3f gyros = ins.get_gyro();
Vector3f accels = ins.get_accel();
cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"),
(int)ahrs.roll_sensor / 100,
(int)ahrs.pitch_sensor / 100,
(uint16_t)ahrs.yaw_sensor / 100,
gyros.x, gyros.y, gyros.z,
accels.x, accels.y, accels.z);
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
if (!g.compass_enabled) {
cliSerial->printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
return 0;
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_compass(&compass);
report_compass();
// we need the AHRS initialised for this test
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate);
ahrs.reset();
uint16_t counter = 0;
float heading = 0;
print_hit_enter();
while(1) {
hal.scheduler->delay(20);
if (hal.scheduler->micros() - fast_loopTimer_us > 19000UL) {
fast_loopTimer_us = hal.scheduler->micros();
// INS
// ---
ahrs.update();
if(counter % 5 == 0) {
if (compass.read()) {
// Calculate heading
const Matrix3f &m = ahrs.get_dcm_matrix();
heading = compass.calculate_heading(m);
compass.learn_offsets();
}
}
counter++;
if (counter>20) {
if (compass.healthy()) {
const Vector3f &mag_ofs = compass.get_offsets();
const Vector3f &mag = compass.get_field();
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
(wrap_360_cd(ToDeg(heading) * 100)) /100,
mag.x, mag.y, mag.z,
mag_ofs.x, mag_ofs.y, mag_ofs.z);
} else {
cliSerial->println_P(PSTR("compass not healthy"));
}
counter=0;
}
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->println_P(PSTR("saving offsets"));
compass.save_offsets();
return (0);
}
//-------------------------------------------------------------------------------------------
// real sensors that have not been simulated yet go here
#if HIL_MODE == HIL_MODE_DISABLED
static int8_t
test_airspeed(uint8_t argc, const Menu::arg *argv)
{
if (!airspeed.enabled()) {
cliSerial->printf_P(PSTR("airspeed: "));
print_enabled(false);
return (0);
}else{
print_hit_enter();
zero_airspeed();
cliSerial->printf_P(PSTR("airspeed: "));
print_enabled(true);
while(1) {
hal.scheduler->delay(20);
read_airspeed();
cliSerial->printf_P(PSTR("%.1f m/s\n"), airspeed.get_airspeed());
if(cliSerial->available() > 0) {
return (0);
}
}
}
}
static int8_t
test_pressure(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Uncalibrated relative airpressure\n"));
print_hit_enter();
init_barometer();
while(1) {
hal.scheduler->delay(100);
if (!barometer.healthy()) {
cliSerial->println_P(PSTR("not healthy"));
} else {
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"),
barometer.get_altitude(),
barometer.get_pressure(),
barometer.get_temperature());
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
#endif // HIL_MODE == HIL_MODE_DISABLED
#endif // CLI_ENABLED