mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 14:38:30 -04:00
a95a3142e0
apparently helps SITL build on MacOS
660 lines
21 KiB
C++
660 lines
21 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_Progmem.h>
|
|
#include "AP_InertialSensor.h"
|
|
|
|
#include <AP_Common.h>
|
|
#include <AP_HAL.h>
|
|
#include <AP_Notify.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
#define SAMPLE_UNIT 1
|
|
|
|
// Class level parameters
|
|
const AP_Param::GroupInfo AP_InertialSensor::var_info[] PROGMEM = {
|
|
// @Param: PRODUCT_ID
|
|
// @DisplayName: IMU Product ID
|
|
// @Description: Which type of IMU is installed (read-only).
|
|
// @User: Advanced
|
|
// @Values: 0:Unknown,1:APM1-1280,2:APM1-2560,88:APM2,3:SITL,4:PX4v1,5:PX4v2,256:Flymaple,257:Linux
|
|
AP_GROUPINFO("PRODUCT_ID", 0, AP_InertialSensor, _product_id, 0),
|
|
|
|
// @Param: ACCSCAL_X
|
|
// @DisplayName: Accelerometer scaling of X axis
|
|
// @Description: Accelerometer scaling of X axis. Calculated during acceleration calibration routine
|
|
// @Range: 0.8 1.2
|
|
// @User: Advanced
|
|
|
|
// @Param: ACCSCAL_Y
|
|
// @DisplayName: Accelerometer scaling of Y axis
|
|
// @Description: Accelerometer scaling of Y axis Calculated during acceleration calibration routine
|
|
// @Range: 0.8 1.2
|
|
// @User: Advanced
|
|
|
|
// @Param: ACCSCAL_Z
|
|
// @DisplayName: Accelerometer scaling of Z axis
|
|
// @Description: Accelerometer scaling of Z axis Calculated during acceleration calibration routine
|
|
// @Range: 0.8 1.2
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCSCAL", 1, AP_InertialSensor, _accel_scale[0], 0),
|
|
|
|
// @Param: ACCOFFS_X
|
|
// @DisplayName: Accelerometer offsets of X axis
|
|
// @Description: Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations
|
|
// @Units: m/s/s
|
|
// @Range: -300 300
|
|
// @User: Advanced
|
|
|
|
// @Param: ACCOFFS_Y
|
|
// @DisplayName: Accelerometer offsets of Y axis
|
|
// @Description: Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations
|
|
// @Units: m/s/s
|
|
// @Range: -300 300
|
|
// @User: Advanced
|
|
|
|
// @Param: ACCOFFS_Z
|
|
// @DisplayName: Accelerometer offsets of Z axis
|
|
// @Description: Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations
|
|
// @Units: m/s/s
|
|
// @Range: -300 300
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCOFFS", 2, AP_InertialSensor, _accel_offset[0], 0),
|
|
|
|
// @Param: GYROFFS_X
|
|
// @DisplayName: Gyro offsets of X axis
|
|
// @Description: Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations
|
|
// @Units: rad/s
|
|
// @User: Advanced
|
|
|
|
// @Param: GYROFFS_Y
|
|
// @DisplayName: Gyro offsets of Y axis
|
|
// @Description: Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations
|
|
// @Units: rad/s
|
|
// @User: Advanced
|
|
|
|
// @Param: GYROFFS_Z
|
|
// @DisplayName: Gyro offsets of Z axis
|
|
// @Description: Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations
|
|
// @Units: rad/s
|
|
// @User: Advanced
|
|
AP_GROUPINFO("GYROFFS", 3, AP_InertialSensor, _gyro_offset[0], 0),
|
|
|
|
// @Param: MPU6K_FILTER
|
|
// @DisplayName: MPU6000 filter frequency
|
|
// @Description: Filter frequency to ask the MPU6000 to apply to samples. This can be set to a lower value to try to cope with very high vibration levels in aircraft. The default value on ArduPlane, APMrover2 and ArduCopter is 20Hz. This option takes effect on the next reboot or gyro initialisation
|
|
// @Units: Hz
|
|
// @Values: 0:Default,5:5Hz,10:10Hz,20:20Hz,42:42Hz,98:98Hz
|
|
// @User: Advanced
|
|
AP_GROUPINFO("MPU6K_FILTER", 4, AP_InertialSensor, _mpu6000_filter, 0),
|
|
|
|
#if INS_MAX_INSTANCES > 1
|
|
AP_GROUPINFO("ACC2SCAL", 5, AP_InertialSensor, _accel_scale[1], 0),
|
|
AP_GROUPINFO("ACC2OFFS", 6, AP_InertialSensor, _accel_offset[1], 0),
|
|
AP_GROUPINFO("GYR2OFFS", 7, AP_InertialSensor, _gyro_offset[1], 0),
|
|
#endif
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
AP_InertialSensor::AP_InertialSensor() :
|
|
_accel(),
|
|
_gyro()
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
void
|
|
AP_InertialSensor::init( Start_style style,
|
|
Sample_rate sample_rate)
|
|
{
|
|
_product_id = _init_sensor(sample_rate);
|
|
|
|
// check scaling
|
|
for (uint8_t i=0; i<get_accel_count(); i++) {
|
|
if (_accel_scale[i].get().is_zero()) {
|
|
_accel_scale[i].set(Vector3f(1,1,1));
|
|
}
|
|
}
|
|
|
|
if (WARM_START != style) {
|
|
// do cold-start calibration for gyro only
|
|
_init_gyro();
|
|
}
|
|
}
|
|
|
|
// save parameters to eeprom
|
|
void AP_InertialSensor::_save_parameters()
|
|
{
|
|
_product_id.save();
|
|
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
|
_accel_scale[i].save();
|
|
_accel_offset[i].save();
|
|
_gyro_offset[i].save();
|
|
}
|
|
}
|
|
|
|
void
|
|
AP_InertialSensor::init_gyro()
|
|
{
|
|
_init_gyro();
|
|
|
|
// save calibration
|
|
_save_parameters();
|
|
}
|
|
|
|
void
|
|
AP_InertialSensor::_init_gyro()
|
|
{
|
|
uint8_t num_gyros = min(get_gyro_count(), INS_MAX_INSTANCES);
|
|
Vector3f last_average[INS_MAX_INSTANCES], best_avg[INS_MAX_INSTANCES];
|
|
float best_diff[INS_MAX_INSTANCES];
|
|
bool converged[INS_MAX_INSTANCES];
|
|
|
|
// cold start
|
|
hal.console->print_P(PSTR("Init Gyro"));
|
|
|
|
// flash leds to tell user to keep the IMU still
|
|
AP_Notify::flags.initialising = true;
|
|
|
|
// remove existing gyro offsets
|
|
for (uint8_t k=0; k<num_gyros; k++) {
|
|
_gyro_offset[k] = Vector3f(0,0,0);
|
|
best_diff[k] = 0;
|
|
last_average[k].zero();
|
|
converged[k] = false;
|
|
}
|
|
|
|
for(int8_t c = 0; c < 5; c++) {
|
|
hal.scheduler->delay(5);
|
|
update();
|
|
}
|
|
|
|
// the strategy is to average 50 points over 0.5 seconds, then do it
|
|
// again and see if the 2nd average is within a small margin of
|
|
// the first
|
|
|
|
uint8_t num_converged = 0;
|
|
|
|
// we try to get a good calibration estimate for up to 10 seconds
|
|
// if the gyros are stable, we should get it in 1 second
|
|
for (int16_t j = 0; j <= 20 && num_converged < num_gyros; j++) {
|
|
Vector3f gyro_sum[INS_MAX_INSTANCES], gyro_avg[INS_MAX_INSTANCES], gyro_diff[INS_MAX_INSTANCES];
|
|
float diff_norm[INS_MAX_INSTANCES];
|
|
uint8_t i;
|
|
|
|
hal.console->print_P(PSTR("*"));
|
|
|
|
for (uint8_t k=0; k<num_gyros; k++) {
|
|
gyro_sum[k].zero();
|
|
}
|
|
for (i=0; i<50; i++) {
|
|
update();
|
|
for (uint8_t k=0; k<num_gyros; k++) {
|
|
gyro_sum[k] += get_gyro(k);
|
|
}
|
|
hal.scheduler->delay(5);
|
|
}
|
|
for (uint8_t k=0; k<num_gyros; k++) {
|
|
gyro_avg[k] = gyro_sum[k] / i;
|
|
gyro_diff[k] = last_average[k] - gyro_avg[k];
|
|
diff_norm[k] = gyro_diff[k].length();
|
|
}
|
|
|
|
for (uint8_t k=0; k<num_gyros; k++) {
|
|
if (converged[k]) continue;
|
|
if (j == 0) {
|
|
best_diff[k] = diff_norm[k];
|
|
best_avg[k] = gyro_avg[k];
|
|
} else if (gyro_diff[k].length() < ToRad(0.1f)) {
|
|
// we want the average to be within 0.1 bit, which is 0.04 degrees/s
|
|
last_average[k] = (gyro_avg[k] * 0.5f) + (last_average[k] * 0.5f);
|
|
_gyro_offset[k] = last_average[k];
|
|
converged[k] = true;
|
|
num_converged++;
|
|
} else if (diff_norm[k] < best_diff[k]) {
|
|
best_diff[k] = diff_norm[k];
|
|
best_avg[k] = (gyro_avg[k] * 0.5f) + (last_average[k] * 0.5f);
|
|
}
|
|
last_average[k] = gyro_avg[k];
|
|
}
|
|
}
|
|
|
|
// stop flashing leds
|
|
AP_Notify::flags.initialising = false;
|
|
|
|
if (num_converged == num_gyros) {
|
|
// all OK
|
|
return;
|
|
}
|
|
|
|
// we've kept the user waiting long enough - use the best pair we
|
|
// found so far
|
|
hal.console->println();
|
|
for (uint8_t k=0; k<num_gyros; k++) {
|
|
if (!converged[k]) {
|
|
hal.console->printf_P(PSTR("gyro[%u] did not converge: diff=%f dps\n"),
|
|
(unsigned)k, ToDeg(best_diff[k]));
|
|
_gyro_offset[k] = best_avg[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
AP_InertialSensor::init_accel()
|
|
{
|
|
_init_accel();
|
|
|
|
// save calibration
|
|
_save_parameters();
|
|
}
|
|
|
|
void
|
|
AP_InertialSensor::_init_accel()
|
|
{
|
|
uint8_t num_accels = min(get_accel_count(), INS_MAX_INSTANCES);
|
|
uint8_t flashcount = 0;
|
|
Vector3f prev[INS_MAX_INSTANCES];
|
|
Vector3f accel_offset[INS_MAX_INSTANCES];
|
|
float total_change[INS_MAX_INSTANCES];
|
|
float max_offset[INS_MAX_INSTANCES];
|
|
|
|
// cold start
|
|
hal.scheduler->delay(100);
|
|
|
|
hal.console->print_P(PSTR("Init Accel"));
|
|
|
|
// flash leds to tell user to keep the IMU still
|
|
AP_Notify::flags.initialising = true;
|
|
|
|
// clear accelerometer offsets and scaling
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
_accel_offset[k] = Vector3f(0,0,0);
|
|
_accel_scale[k] = Vector3f(1,1,1);
|
|
|
|
// initialise accel offsets to a large value the first time
|
|
// this will force us to calibrate accels at least twice
|
|
accel_offset[k] = Vector3f(500, 500, 500);
|
|
}
|
|
|
|
// loop until we calculate acceptable offsets
|
|
while (true) {
|
|
// get latest accelerometer values
|
|
update();
|
|
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
// store old offsets
|
|
prev[k] = accel_offset[k];
|
|
|
|
// get new offsets
|
|
accel_offset[k] = get_accel(k);
|
|
}
|
|
|
|
// We take some readings...
|
|
for(int8_t i = 0; i < 50; i++) {
|
|
|
|
hal.scheduler->delay(20);
|
|
update();
|
|
|
|
// low pass filter the offsets
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
accel_offset[k] = accel_offset[k] * 0.9f + get_accel(k) * 0.1f;
|
|
}
|
|
|
|
// display some output to the user
|
|
if(flashcount >= 10) {
|
|
hal.console->print_P(PSTR("*"));
|
|
flashcount = 0;
|
|
}
|
|
flashcount++;
|
|
}
|
|
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
// null gravity from the Z accel
|
|
accel_offset[k].z += GRAVITY_MSS;
|
|
|
|
total_change[k] =
|
|
fabsf(prev[k].x - accel_offset[k].x) +
|
|
fabsf(prev[k].y - accel_offset[k].y) +
|
|
fabsf(prev[k].z - accel_offset[k].z);
|
|
max_offset[k] = (accel_offset[k].x > accel_offset[k].y) ? accel_offset[k].x : accel_offset[k].y;
|
|
max_offset[k] = (max_offset[k] > accel_offset[k].z) ? max_offset[k] : accel_offset[k].z;
|
|
}
|
|
|
|
uint8_t num_converged = 0;
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
if (total_change[k] <= AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE &&
|
|
max_offset[k] <= AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET) {
|
|
num_converged++;
|
|
}
|
|
}
|
|
|
|
if (num_converged == num_accels) break;
|
|
|
|
hal.scheduler->delay(500);
|
|
}
|
|
|
|
// set the global accel offsets
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
_accel_offset[k] = accel_offset[k];
|
|
}
|
|
|
|
// stop flashing the leds
|
|
AP_Notify::flags.initialising = false;
|
|
|
|
hal.console->print_P(PSTR(" "));
|
|
|
|
}
|
|
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
// calibrate_accel - perform accelerometer calibration including providing user
|
|
// instructions and feedback Gauss-Newton accel calibration routines borrowed
|
|
// from Rolfe Schmidt blog post describing the method:
|
|
// http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
|
|
// original sketch available at
|
|
// http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
|
|
bool AP_InertialSensor::calibrate_accel(AP_InertialSensor_UserInteract* interact,
|
|
float &trim_roll,
|
|
float &trim_pitch)
|
|
{
|
|
uint8_t num_accels = min(get_accel_count(), INS_MAX_INSTANCES);
|
|
Vector3f samples[INS_MAX_INSTANCES][6];
|
|
Vector3f new_offsets[INS_MAX_INSTANCES];
|
|
Vector3f new_scaling[INS_MAX_INSTANCES];
|
|
Vector3f orig_offset[INS_MAX_INSTANCES];
|
|
Vector3f orig_scale[INS_MAX_INSTANCES];
|
|
uint8_t num_ok = 0;
|
|
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
// backup original offsets and scaling
|
|
orig_offset[k] = _accel_offset[k].get();
|
|
orig_scale[k] = _accel_scale[k].get();
|
|
|
|
// clear accelerometer offsets and scaling
|
|
_accel_offset[k] = Vector3f(0,0,0);
|
|
_accel_scale[k] = Vector3f(1,1,1);
|
|
}
|
|
|
|
// capture data from 6 positions
|
|
for (uint8_t i=0; i<6; i++) {
|
|
const prog_char_t *msg;
|
|
|
|
// display message to user
|
|
switch ( i ) {
|
|
case 0:
|
|
msg = PSTR("level");
|
|
break;
|
|
case 1:
|
|
msg = PSTR("on its LEFT side");
|
|
break;
|
|
case 2:
|
|
msg = PSTR("on its RIGHT side");
|
|
break;
|
|
case 3:
|
|
msg = PSTR("nose DOWN");
|
|
break;
|
|
case 4:
|
|
msg = PSTR("nose UP");
|
|
break;
|
|
default: // default added to avoid compiler warning
|
|
case 5:
|
|
msg = PSTR("on its BACK");
|
|
break;
|
|
}
|
|
interact->printf_P(
|
|
PSTR("Place vehicle %S and press any key.\n"), msg);
|
|
|
|
// wait for user input
|
|
interact->blocking_read();
|
|
|
|
// clear out any existing samples from ins
|
|
update();
|
|
|
|
// average 32 samples
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
samples[k][i] = Vector3f();
|
|
}
|
|
uint8_t num_samples = 0;
|
|
while (num_samples < 32) {
|
|
if (!wait_for_sample(1000)) {
|
|
interact->printf_P(PSTR("Failed to get INS sample\n"));
|
|
goto failed;
|
|
}
|
|
// read samples from ins
|
|
update();
|
|
// capture sample
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
samples[k][i] += get_accel(k);
|
|
}
|
|
hal.scheduler->delay(10);
|
|
num_samples++;
|
|
}
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
samples[k][i] /= num_samples;
|
|
}
|
|
}
|
|
|
|
// run the calibration routine
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
bool success = _calibrate_accel(samples[k], new_offsets[k], new_scaling[k]);
|
|
|
|
interact->printf_P(PSTR("Offsets[%u]: %.2f %.2f %.2f\n"),
|
|
(unsigned)k,
|
|
new_offsets[k].x, new_offsets[k].y, new_offsets[k].z);
|
|
interact->printf_P(PSTR("Scaling[%u]: %.2f %.2f %.2f\n"),
|
|
(unsigned)k,
|
|
new_scaling[k].x, new_scaling[k].y, new_scaling[k].z);
|
|
if (success) num_ok++;
|
|
}
|
|
|
|
if (num_ok == num_accels) {
|
|
interact->printf_P(PSTR("Calibration successful\n"));
|
|
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
// set and save calibration
|
|
_accel_offset[k].set(new_offsets[k]);
|
|
_accel_scale[k].set(new_scaling[k]);
|
|
}
|
|
_save_parameters();
|
|
|
|
// calculate the trims as well from primary accels and pass back to caller
|
|
_calculate_trim(samples[0][0], trim_roll, trim_pitch);
|
|
|
|
return true;
|
|
}
|
|
|
|
failed:
|
|
interact->printf_P(PSTR("Calibration FAILED\n"));
|
|
// restore original scaling and offsets
|
|
for (uint8_t k=0; k<num_accels; k++) {
|
|
_accel_offset[k].set(orig_offset[k]);
|
|
_accel_scale[k].set(orig_scale[k]);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// calibrated - returns true if the accelerometers have been calibrated
|
|
/// @note this should not be called while flying because it reads from the eeprom which can be slow
|
|
bool AP_InertialSensor::calibrated()
|
|
{
|
|
return _accel_offset[0].load();
|
|
}
|
|
|
|
// _calibrate_model - perform low level accel calibration
|
|
// accel_sample are accelerometer samples collected in 6 different positions
|
|
// accel_offsets are output from the calibration routine
|
|
// accel_scale are output from the calibration routine
|
|
// returns true if successful
|
|
bool AP_InertialSensor::_calibrate_accel( Vector3f accel_sample[6],
|
|
Vector3f& accel_offsets, Vector3f& accel_scale )
|
|
{
|
|
int16_t i;
|
|
int16_t num_iterations = 0;
|
|
float eps = 0.000000001;
|
|
float change = 100.0;
|
|
float data[3];
|
|
float beta[6];
|
|
float delta[6];
|
|
float ds[6];
|
|
float JS[6][6];
|
|
bool success = true;
|
|
|
|
// reset
|
|
beta[0] = beta[1] = beta[2] = 0;
|
|
beta[3] = beta[4] = beta[5] = 1.0f/GRAVITY_MSS;
|
|
|
|
while( num_iterations < 20 && change > eps ) {
|
|
num_iterations++;
|
|
|
|
_calibrate_reset_matrices(ds, JS);
|
|
|
|
for( i=0; i<6; i++ ) {
|
|
data[0] = accel_sample[i].x;
|
|
data[1] = accel_sample[i].y;
|
|
data[2] = accel_sample[i].z;
|
|
_calibrate_update_matrices(ds, JS, beta, data);
|
|
}
|
|
|
|
_calibrate_find_delta(ds, JS, delta);
|
|
|
|
change = delta[0]*delta[0] +
|
|
delta[0]*delta[0] +
|
|
delta[1]*delta[1] +
|
|
delta[2]*delta[2] +
|
|
delta[3]*delta[3] / (beta[3]*beta[3]) +
|
|
delta[4]*delta[4] / (beta[4]*beta[4]) +
|
|
delta[5]*delta[5] / (beta[5]*beta[5]);
|
|
|
|
for( i=0; i<6; i++ ) {
|
|
beta[i] -= delta[i];
|
|
}
|
|
}
|
|
|
|
// copy results out
|
|
accel_scale.x = beta[3] * GRAVITY_MSS;
|
|
accel_scale.y = beta[4] * GRAVITY_MSS;
|
|
accel_scale.z = beta[5] * GRAVITY_MSS;
|
|
accel_offsets.x = beta[0] * accel_scale.x;
|
|
accel_offsets.y = beta[1] * accel_scale.y;
|
|
accel_offsets.z = beta[2] * accel_scale.z;
|
|
|
|
// sanity check scale
|
|
if( accel_scale.is_nan() || fabsf(accel_scale.x-1.0f) > 0.1f || fabsf(accel_scale.y-1.0f) > 0.1f || fabsf(accel_scale.z-1.0f) > 0.1f ) {
|
|
success = false;
|
|
}
|
|
// sanity check offsets (3.5 is roughly 3/10th of a G, 5.0 is roughly half a G)
|
|
if( accel_offsets.is_nan() || fabsf(accel_offsets.x) > 3.5f || fabsf(accel_offsets.y) > 3.5f || fabsf(accel_offsets.z) > 3.5f ) {
|
|
success = false;
|
|
}
|
|
|
|
// return success or failure
|
|
return success;
|
|
}
|
|
|
|
void AP_InertialSensor::_calibrate_update_matrices(float dS[6], float JS[6][6],
|
|
float beta[6], float data[3])
|
|
{
|
|
int16_t j, k;
|
|
float dx, b;
|
|
float residual = 1.0;
|
|
float jacobian[6];
|
|
|
|
for( j=0; j<3; j++ ) {
|
|
b = beta[3+j];
|
|
dx = (float)data[j] - beta[j];
|
|
residual -= b*b*dx*dx;
|
|
jacobian[j] = 2.0f*b*b*dx;
|
|
jacobian[3+j] = -2.0f*b*dx*dx;
|
|
}
|
|
|
|
for( j=0; j<6; j++ ) {
|
|
dS[j] += jacobian[j]*residual;
|
|
for( k=0; k<6; k++ ) {
|
|
JS[j][k] += jacobian[j]*jacobian[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// _calibrate_reset_matrices - clears matrices
|
|
void AP_InertialSensor::_calibrate_reset_matrices(float dS[6], float JS[6][6])
|
|
{
|
|
int16_t j,k;
|
|
for( j=0; j<6; j++ ) {
|
|
dS[j] = 0.0f;
|
|
for( k=0; k<6; k++ ) {
|
|
JS[j][k] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_InertialSensor::_calibrate_find_delta(float dS[6], float JS[6][6], float delta[6])
|
|
{
|
|
//Solve 6-d matrix equation JS*x = dS
|
|
//first put in upper triangular form
|
|
int16_t i,j,k;
|
|
float mu;
|
|
|
|
//make upper triangular
|
|
for( i=0; i<6; i++ ) {
|
|
//eliminate all nonzero entries below JS[i][i]
|
|
for( j=i+1; j<6; j++ ) {
|
|
mu = JS[i][j]/JS[i][i];
|
|
if( mu != 0.0f ) {
|
|
dS[j] -= mu*dS[i];
|
|
for( k=j; k<6; k++ ) {
|
|
JS[k][j] -= mu*JS[k][i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//back-substitute
|
|
for( i=5; i>=0; i-- ) {
|
|
dS[i] /= JS[i][i];
|
|
JS[i][i] = 1.0f;
|
|
|
|
for( j=0; j<i; j++ ) {
|
|
mu = JS[i][j];
|
|
dS[j] -= mu*dS[i];
|
|
JS[i][j] = 0.0f;
|
|
}
|
|
}
|
|
|
|
for( i=0; i<6; i++ ) {
|
|
delta[i] = dS[i];
|
|
}
|
|
}
|
|
|
|
// _calculate_trim - calculates the x and y trim angles (in radians) given a raw accel sample (i.e. no scaling or offsets applied) taken when the vehicle was level
|
|
void AP_InertialSensor::_calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch)
|
|
{
|
|
// scale sample and apply offsets
|
|
Vector3f accel_scale = _accel_scale[0].get();
|
|
Vector3f accel_offsets = _accel_offset[0].get();
|
|
Vector3f scaled_accels_x( accel_sample.x * accel_scale.x - accel_offsets.x,
|
|
0,
|
|
accel_sample.z * accel_scale.z - accel_offsets.z );
|
|
Vector3f scaled_accels_y( 0,
|
|
accel_sample.y * accel_scale.y - accel_offsets.y,
|
|
accel_sample.z * accel_scale.z - accel_offsets.z );
|
|
|
|
// calculate x and y axis angle (i.e. roll and pitch angles)
|
|
Vector3f vertical = Vector3f(0,0,-1);
|
|
trim_roll = scaled_accels_y.angle(vertical);
|
|
trim_pitch = scaled_accels_x.angle(vertical);
|
|
|
|
// angle call doesn't return the sign so take care of it here
|
|
if( scaled_accels_y.y > 0 ) {
|
|
trim_roll = -trim_roll;
|
|
}
|
|
if( scaled_accels_x.x < 0 ) {
|
|
trim_pitch = -trim_pitch;
|
|
}
|
|
}
|
|
|
|
#endif // __AVR_ATmega1280__
|
|
|