ardupilot/libraries/AC_PID/AC_PID_Basic.h

99 lines
3.6 KiB
C++

#pragma once
/// @file AC_PID_Basic.h
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants.
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Logger/AP_Logger.h>
/// @class AC_PID_Basic
/// @brief Copter PID control class
class AC_PID_Basic {
public:
// Constructor for PID
AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt);
// set time step in seconds
void set_dt(float dt) { _dt = dt; }
// set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float update_all(float target, float measurement, bool limit = false) WARN_IF_UNUSED;
float update_all(float target, float measurement, bool limit_neg, bool limit_pos) WARN_IF_UNUSED;
// update the integral
// if the limit flags are set the integral is only allowed to shrink
void update_i(bool limit_neg, bool limit_pos);
// get results from pid controller
float get_p() const WARN_IF_UNUSED { return _error * _kp; }
float get_i() const WARN_IF_UNUSED { return _integrator; }
float get_d() const WARN_IF_UNUSED { return _derivative * _kd; }
float get_ff() const WARN_IF_UNUSED { return _target * _kff; }
float get_error() const WARN_IF_UNUSED { return _error; }
// reset the integrator
void reset_I() { _integrator = 0.0f; }
// input and D term filter will be reset to the next value provided to set_input()
void reset_filter() { _reset_filter = true; }
// save gain to eeprom
void save_gains();
// get accessors
AP_Float &kP() WARN_IF_UNUSED { return _kp; }
AP_Float &kI() WARN_IF_UNUSED { return _ki; }
AP_Float &kD() WARN_IF_UNUSED { return _kd; }
AP_Float &ff() WARN_IF_UNUSED { return _kff;}
AP_Float &filt_E_hz() WARN_IF_UNUSED { return _filt_E_hz; }
AP_Float &filt_D_hz() WARN_IF_UNUSED { return _filt_D_hz; }
float imax() const WARN_IF_UNUSED { return _kimax.get(); }
float get_filt_E_alpha() const WARN_IF_UNUSED;
float get_filt_D_alpha() const WARN_IF_UNUSED;
// set accessors
void kP(float v) { _kp.set(v); }
void kI(float v) { _ki.set(v); }
void kD(float v) { _kd.set(v); }
void ff(float v) { _kff.set(v); }
void imax(float v) { _kimax.set(fabsf(v)); }
void filt_E_hz(float hz) { _filt_E_hz.set(fabsf(hz)); }
void filt_D_hz(float hz) { _filt_D_hz.set(fabsf(hz)); }
// integrator setting functions
void set_integrator(float target, float measurement, float i);
void set_integrator(float error, float i);
void set_integrator(float i);
const AP_Logger::PID_Info& get_pid_info(void) const WARN_IF_UNUSED { return _pid_info; }
// parameter var table
static const struct AP_Param::GroupInfo var_info[];
protected:
// parameters
AP_Float _kp;
AP_Float _ki;
AP_Float _kd;
AP_Float _kff;
AP_Float _kimax;
AP_Float _filt_E_hz; // PID error filter frequency in Hz
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
// internal variables
float _dt; // timestep in seconds
float _target; // target value to enable filtering
float _error; // error value to enable filtering
float _derivative; // last derivative for low-pass filter
float _integrator; // integrator value
bool _reset_filter; // true when input filter should be reset during next call to set_input
AP_Logger::PID_Info _pid_info;
};