ardupilot/ArduCopter/mode_guided.cpp

1150 lines
42 KiB
C++

#include "Copter.h"
#if MODE_GUIDED_ENABLED == ENABLED
/*
* Init and run calls for guided flight mode
*/
static Vector3p guided_pos_target_cm; // position target (used by posvel controller only)
bool guided_pos_terrain_alt; // true if guided_pos_target_cm.z is an alt above terrain
static Vector3f guided_vel_target_cms; // velocity target (used by pos_vel_accel controller and vel_accel controller)
static Vector3f guided_accel_target_cmss; // acceleration target (used by pos_vel_accel controller vel_accel controller and accel controller)
static uint32_t update_time_ms; // system time of last target update to pos_vel_accel, vel_accel or accel controller
struct {
uint32_t update_time_ms;
Quaternion attitude_quat;
Vector3f ang_vel;
float yaw_rate_cds;
float climb_rate_cms; // climb rate in cms. Used if use_thrust is false
float thrust; // thrust from -1 to 1. Used if use_thrust is true
bool use_yaw_rate;
bool use_thrust;
} static guided_angle_state;
struct Guided_Limit {
uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked
float alt_min_cm; // lower altitude limit in cm above home (0 = no limit)
float alt_max_cm; // upper altitude limit in cm above home (0 = no limit)
float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit)
uint32_t start_time;// system time in milliseconds that control was handed to the external computer
Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit
} guided_limit;
// init - initialise guided controller
bool ModeGuided::init(bool ignore_checks)
{
// start in velaccel control mode
velaccel_control_start();
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
send_notification = false;
// clear pause state when entering guided mode
_paused = false;
return true;
}
// run - runs the guided controller
// should be called at 100hz or more
void ModeGuided::run()
{
// run pause control if the vehicle is paused
if (_paused) {
pause_control_run();
return;
}
// call the correct auto controller
switch (guided_mode) {
case SubMode::TakeOff:
// run takeoff controller
takeoff_run();
break;
case SubMode::WP:
// run waypoint controller
wp_control_run();
if (send_notification && wp_nav->reached_wp_destination()) {
send_notification = false;
gcs().send_mission_item_reached_message(0);
}
break;
case SubMode::Pos:
// run position controller
pos_control_run();
break;
case SubMode::Accel:
accel_control_run();
break;
case SubMode::VelAccel:
velaccel_control_run();
break;
case SubMode::PosVelAccel:
posvelaccel_control_run();
break;
case SubMode::Angle:
angle_control_run();
break;
}
}
bool ModeGuided::allows_arming(AP_Arming::Method method) const
{
// always allow arming from the ground station
if (method == AP_Arming::Method::MAVLINK) {
return true;
}
// optionally allow arming from the transmitter
return (copter.g2.guided_options & (uint32_t)Options::AllowArmingFromTX) != 0;
};
// initialises position controller to implement take-off
// takeoff_alt_cm is interpreted as alt-above-home (in cm) or alt-above-terrain if a rangefinder is available
bool ModeGuided::do_user_takeoff_start(float takeoff_alt_cm)
{
// calculate target altitude and frame (either alt-above-ekf-origin or alt-above-terrain)
int32_t alt_target_cm;
bool alt_target_terrain = false;
if (wp_nav->rangefinder_used_and_healthy() &&
wp_nav->get_terrain_source() == AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER &&
takeoff_alt_cm < copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) {
// can't takeoff downwards
if (takeoff_alt_cm <= copter.rangefinder_state.alt_cm) {
return false;
}
// provide target altitude as alt-above-terrain
alt_target_cm = takeoff_alt_cm;
alt_target_terrain = true;
} else {
// interpret altitude as alt-above-home
Location target_loc = copter.current_loc;
target_loc.set_alt_cm(takeoff_alt_cm, Location::AltFrame::ABOVE_HOME);
// provide target altitude as alt-above-ekf-origin
if (!target_loc.get_alt_cm(Location::AltFrame::ABOVE_ORIGIN, alt_target_cm)) {
// this should never happen but we reject the command just in case
return false;
}
}
guided_mode = SubMode::TakeOff;
// initialise yaw
auto_yaw.set_mode(AutoYaw::Mode::HOLD);
// clear i term when we're taking off
pos_control->init_z_controller();
// initialise alt for WP_NAVALT_MIN and set completion alt
auto_takeoff_start(alt_target_cm, alt_target_terrain);
// record takeoff has not completed
takeoff_complete = false;
return true;
}
// initialise guided mode's waypoint navigation controller
void ModeGuided::wp_control_start()
{
// set to position control mode
guided_mode = SubMode::WP;
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
// initialise wpnav to stopping point
Vector3f stopping_point;
wp_nav->get_wp_stopping_point(stopping_point);
if (!wp_nav->set_wp_destination(stopping_point, false)) {
// this should never happen because terrain data is not used
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
// initialise yaw
auto_yaw.set_mode_to_default(false);
}
// run guided mode's waypoint navigation controller
void ModeGuided::wp_control_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller with auto yaw
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.get_heading());
}
// initialise position controller
void ModeGuided::pva_control_start()
{
// initialise horizontal speed, acceleration
pos_control->set_max_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration());
pos_control->set_correction_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration());
// initialize vertical speeds and acceleration
pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
// initialise velocity controller
pos_control->init_z_controller();
pos_control->init_xy_controller();
// initialise yaw
auto_yaw.set_mode_to_default(false);
// initialise terrain alt
guided_pos_terrain_alt = false;
}
// initialise guided mode's position controller
void ModeGuided::pos_control_start()
{
// set to position control mode
guided_mode = SubMode::Pos;
// initialise position controller
pva_control_start();
}
// initialise guided mode's velocity controller
void ModeGuided::accel_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::Accel;
// initialise position controller
pva_control_start();
}
// initialise guided mode's velocity and acceleration controller
void ModeGuided::velaccel_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::VelAccel;
// initialise position controller
pva_control_start();
}
// initialise guided mode's position, velocity and acceleration controller
void ModeGuided::posvelaccel_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::PosVelAccel;
// initialise position controller
pva_control_start();
}
bool ModeGuided::is_taking_off() const
{
return guided_mode == SubMode::TakeOff && !takeoff_complete;
}
bool ModeGuided::set_speed_xy(float speed_xy_cms)
{
// initialise horizontal speed, acceleration
pos_control->set_max_speed_accel_xy(speed_xy_cms, wp_nav->get_wp_acceleration());
pos_control->set_correction_speed_accel_xy(speed_xy_cms, wp_nav->get_wp_acceleration());
return true;
}
bool ModeGuided::set_speed_up(float speed_up_cms)
{
// initialize vertical speeds and acceleration
pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), speed_up_cms, wp_nav->get_accel_z());
pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), speed_up_cms, wp_nav->get_accel_z());
return true;
}
bool ModeGuided::set_speed_down(float speed_down_cms)
{
// initialize vertical speeds and acceleration
pos_control->set_max_speed_accel_z(speed_down_cms, wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
pos_control->set_correction_speed_accel_z(speed_down_cms, wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
return true;
}
// initialise guided mode's angle controller
void ModeGuided::angle_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::Angle;
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
// initialise the vertical position controller
if (!pos_control->is_active_z()) {
pos_control->init_z_controller();
}
// initialise targets
guided_angle_state.update_time_ms = millis();
guided_angle_state.attitude_quat.initialise();
guided_angle_state.ang_vel.zero();
guided_angle_state.climb_rate_cms = 0.0f;
guided_angle_state.yaw_rate_cds = 0.0f;
guided_angle_state.use_yaw_rate = false;
// pilot always controls yaw
auto_yaw.set_mode(AutoYaw::Mode::HOLD);
}
// set_destination - sets guided mode's target destination
// Returns true if the fence is enabled and guided waypoint is within the fence
// else return false if the waypoint is outside the fence
bool ModeGuided::set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool terrain_alt)
{
#if AP_FENCE_ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN);
if (!copter.fence.check_destination_within_fence(dest_loc)) {
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// if configured to use wpnav for position control
if (use_wpnav_for_position_control()) {
// ensure we are in position control mode
if (guided_mode != SubMode::WP) {
wp_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// no need to check return status because terrain data is not used
wp_nav->set_wp_destination(destination, terrain_alt);
// log target
copter.Log_Write_Guided_Position_Target(guided_mode, destination, terrain_alt, Vector3f(), Vector3f());
send_notification = true;
return true;
}
// if configured to use position controller for position control
// ensure we are in position control mode
if (guided_mode != SubMode::Pos) {
pos_control_start();
}
// initialise terrain following if needed
if (terrain_alt) {
// get current alt above terrain
float origin_terr_offset;
if (!wp_nav->get_terrain_offset(origin_terr_offset)) {
// if we don't have terrain altitude then stop
init(true);
return false;
}
// convert origin to alt-above-terrain if necessary
if (!guided_pos_terrain_alt) {
// new destination is alt-above-terrain, previous destination was alt-above-ekf-origin
pos_control->set_pos_offset_z_cm(origin_terr_offset);
}
} else {
pos_control->set_pos_offset_z_cm(0.0);
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set position target and zero velocity and acceleration
guided_pos_target_cm = destination.topostype();
guided_pos_terrain_alt = terrain_alt;
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
update_time_ms = millis();
// log target
copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
send_notification = true;
return true;
}
bool ModeGuided::get_wp(Location& destination) const
{
switch (guided_mode) {
case SubMode::WP:
return wp_nav->get_oa_wp_destination(destination);
case SubMode::Pos:
destination = Location(guided_pos_target_cm.tofloat(), guided_pos_terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN);
return true;
default:
return false;
}
// should never get here but just in case
return false;
}
// sets guided mode's target from a Location object
// returns false if destination could not be set (probably caused by missing terrain data)
// or if the fence is enabled and guided waypoint is outside the fence
bool ModeGuided::set_destination(const Location& dest_loc, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
#if AP_FENCE_ENABLED
// reject destination outside the fence.
// Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails
if (!copter.fence.check_destination_within_fence(dest_loc)) {
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// if using wpnav for position control
if (use_wpnav_for_position_control()) {
if (guided_mode != SubMode::WP) {
wp_control_start();
}
if (!wp_nav->set_wp_destination_loc(dest_loc)) {
// failure to set destination can only be because of missing terrain data
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// log target
copter.Log_Write_Guided_Position_Target(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt), (dest_loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN), Vector3f(), Vector3f());
send_notification = true;
return true;
}
// if configured to use position controller for position control
// ensure we are in position control mode
if (guided_mode != SubMode::Pos) {
pos_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set position target and zero velocity and acceleration
Vector3f pos_target_f;
bool terrain_alt;
if (!wp_nav->get_vector_NEU(dest_loc, pos_target_f, terrain_alt)) {
return false;
}
// initialise terrain following if needed
if (terrain_alt) {
// get current alt above terrain
float origin_terr_offset;
if (!wp_nav->get_terrain_offset(origin_terr_offset)) {
// if we don't have terrain altitude then stop
init(true);
return false;
}
// convert origin to alt-above-terrain if necessary
if (!guided_pos_terrain_alt) {
// new destination is alt-above-terrain, previous destination was alt-above-ekf-origin
pos_control->set_pos_offset_z_cm(origin_terr_offset);
}
} else {
pos_control->set_pos_offset_z_cm(0.0);
}
guided_pos_target_cm = pos_target_f.topostype();
guided_pos_terrain_alt = terrain_alt;
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
update_time_ms = millis();
// log target
copter.Log_Write_Guided_Position_Target(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
send_notification = true;
return true;
}
// set_velaccel - sets guided mode's target velocity and acceleration
void ModeGuided::set_accel(const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
// check we are in velocity control mode
if (guided_mode != SubMode::Accel) {
accel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set velocity and acceleration targets and zero position
guided_pos_target_cm.zero();
guided_pos_terrain_alt = false;
guided_vel_target_cms.zero();
guided_accel_target_cmss = acceleration;
update_time_ms = millis();
// log target
if (log_request) {
copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
}
}
// set_velocity - sets guided mode's target velocity
void ModeGuided::set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
set_velaccel(velocity, Vector3f(), use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw, log_request);
}
// set_velaccel - sets guided mode's target velocity and acceleration
void ModeGuided::set_velaccel(const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
// check we are in velocity control mode
if (guided_mode != SubMode::VelAccel) {
velaccel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set velocity and acceleration targets and zero position
guided_pos_target_cm.zero();
guided_pos_terrain_alt = false;
guided_vel_target_cms = velocity;
guided_accel_target_cmss = acceleration;
update_time_ms = millis();
// log target
if (log_request) {
copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
}
}
// set_destination_posvel - set guided mode position and velocity target
bool ModeGuided::set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
return set_destination_posvelaccel(destination, velocity, Vector3f(), use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
}
// set_destination_posvelaccel - set guided mode position, velocity and acceleration target
bool ModeGuided::set_destination_posvelaccel(const Vector3f& destination, const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
#if AP_FENCE_ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN);
if (!copter.fence.check_destination_within_fence(dest_loc)) {
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// check we are in velocity control mode
if (guided_mode != SubMode::PosVelAccel) {
posvelaccel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
update_time_ms = millis();
guided_pos_target_cm = destination.topostype();
guided_pos_terrain_alt = false;
guided_vel_target_cms = velocity;
guided_accel_target_cmss = acceleration;
// log target
copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
return true;
}
// returns true if GUIDED_OPTIONS param suggests SET_ATTITUDE_TARGET's "thrust" field should be interpreted as thrust instead of climb rate
bool ModeGuided::set_attitude_target_provides_thrust() const
{
return ((copter.g2.guided_options.get() & uint32_t(Options::SetAttitudeTarget_ThrustAsThrust)) != 0);
}
// returns true if GUIDED_OPTIONS param specifies position should be controlled (when velocity and/or acceleration control is active)
bool ModeGuided::stabilizing_pos_xy() const
{
return !((copter.g2.guided_options.get() & uint32_t(Options::DoNotStabilizePositionXY)) != 0);
}
// returns true if GUIDED_OPTIONS param specifies velocity should be controlled (when acceleration control is active)
bool ModeGuided::stabilizing_vel_xy() const
{
return !((copter.g2.guided_options.get() & uint32_t(Options::DoNotStabilizeVelocityXY)) != 0);
}
// returns true if GUIDED_OPTIONS param specifies waypoint navigation should be used for position control (allow path planning to be used but updates must be slower)
bool ModeGuided::use_wpnav_for_position_control() const
{
return ((copter.g2.guided_options.get() & uint32_t(Options::WPNavUsedForPosControl)) != 0);
}
// Sets guided's angular target submode: Using a rotation quaternion, angular velocity, and climbrate or thrust (depends on user option)
// attitude_quat: IF zero: ang_vel (angular velocity) must be provided even if all zeroes
// IF non-zero: attitude_control is performed using both the attitude quaternion and angular velocity
// ang_vel: angular velocity (rad/s)
// climb_rate_cms_or_thrust: represents either the climb_rate (cm/s) or thrust scaled from [0, 1], unitless
// use_thrust: IF true: climb_rate_cms_or_thrust represents thrust
// IF false: climb_rate_cms_or_thrust represents climb_rate (cm/s)
void ModeGuided::set_angle(const Quaternion &attitude_quat, const Vector3f &ang_vel, float climb_rate_cms_or_thrust, bool use_thrust)
{
// check we are in velocity control mode
if (guided_mode != SubMode::Angle) {
angle_control_start();
}
guided_angle_state.attitude_quat = attitude_quat;
guided_angle_state.ang_vel = ang_vel;
guided_angle_state.use_thrust = use_thrust;
if (use_thrust) {
guided_angle_state.thrust = climb_rate_cms_or_thrust;
guided_angle_state.climb_rate_cms = 0.0f;
} else {
guided_angle_state.thrust = 0.0f;
guided_angle_state.climb_rate_cms = climb_rate_cms_or_thrust;
}
guided_angle_state.update_time_ms = millis();
// convert quaternion to euler angles
float roll_rad, pitch_rad, yaw_rad;
attitude_quat.to_euler(roll_rad, pitch_rad, yaw_rad);
// log target
copter.Log_Write_Guided_Attitude_Target(guided_mode, roll_rad, pitch_rad, yaw_rad, ang_vel, guided_angle_state.thrust, guided_angle_state.climb_rate_cms * 0.01);
}
// takeoff_run - takeoff in guided mode
// called by guided_run at 100hz or more
void ModeGuided::takeoff_run()
{
auto_takeoff_run();
if (auto_takeoff_complete && !takeoff_complete) {
takeoff_complete = true;
#if LANDING_GEAR_ENABLED == ENABLED
// optionally retract landing gear
copter.landinggear.retract_after_takeoff();
#endif
}
}
// pos_control_run - runs the guided position controller
// called from guided_run
void ModeGuided::pos_control_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// calculate terrain adjustments
float terr_offset = 0.0f;
if (guided_pos_terrain_alt && !wp_nav->get_terrain_offset(terr_offset)) {
// failure to set destination can only be because of missing terrain data
copter.failsafe_terrain_on_event();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// send position and velocity targets to position controller
guided_accel_target_cmss.zero();
guided_vel_target_cms.zero();
// stop rotating if no updates received within timeout_ms
if (millis() - update_time_ms > get_timeout_ms()) {
if ((auto_yaw.mode() == AutoYaw::Mode::RATE) || (auto_yaw.mode() == AutoYaw::Mode::ANGLE_RATE)) {
auto_yaw.set_mode(AutoYaw::Mode::HOLD);
}
}
float pos_offset_z_buffer = 0.0; // Vertical buffer size in m
if (guided_pos_terrain_alt) {
pos_offset_z_buffer = MIN(copter.wp_nav->get_terrain_margin() * 100.0, 0.5 * fabsF(guided_pos_target_cm.z));
}
pos_control->input_pos_xyz(guided_pos_target_cm, terr_offset, pos_offset_z_buffer);
// run position controllers
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller with auto yaw
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.get_heading());
}
// velaccel_control_run - runs the guided velocity controller
// called from guided_run
void ModeGuided::accel_control_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - update_time_ms > get_timeout_ms()) {
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
if ((auto_yaw.mode() == AutoYaw::Mode::RATE) || (auto_yaw.mode() == AutoYaw::Mode::ANGLE_RATE)) {
auto_yaw.set_mode(AutoYaw::Mode::HOLD);
}
pos_control->input_vel_accel_xy(guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false);
pos_control->input_vel_accel_z(guided_vel_target_cms.z, guided_accel_target_cmss.z, false, false);
} else {
// update position controller with new target
pos_control->input_accel_xy(guided_accel_target_cmss);
if (!stabilizing_vel_xy()) {
// set position and velocity errors to zero
pos_control->stop_vel_xy_stabilisation();
} else if (!stabilizing_pos_xy()) {
// set position errors to zero
pos_control->stop_pos_xy_stabilisation();
}
pos_control->input_accel_z(guided_accel_target_cmss.z);
}
// call velocity controller which includes z axis controller
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller with auto yaw
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.get_heading());
}
// velaccel_control_run - runs the guided velocity and acceleration controller
// called from guided_run
void ModeGuided::velaccel_control_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - update_time_ms > get_timeout_ms()) {
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
if ((auto_yaw.mode() == AutoYaw::Mode::RATE) || (auto_yaw.mode() == AutoYaw::Mode::ANGLE_RATE)) {
auto_yaw.set_mode(AutoYaw::Mode::HOLD);
}
}
bool do_avoid = false;
#if AC_AVOID_ENABLED
// limit the velocity for obstacle/fence avoidance
copter.avoid.adjust_velocity(guided_vel_target_cms, pos_control->get_pos_xy_p().kP(), pos_control->get_max_accel_xy_cmss(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z_cmss(), G_Dt);
do_avoid = copter.avoid.limits_active();
#endif
// update position controller with new target
if (!stabilizing_vel_xy() && !do_avoid) {
// set the current commanded xy vel to the desired vel
guided_vel_target_cms.x = pos_control->get_vel_desired_cms().x;
guided_vel_target_cms.y = pos_control->get_vel_desired_cms().y;
}
pos_control->input_vel_accel_xy(guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false);
if (!stabilizing_vel_xy() && !do_avoid) {
// set position and velocity errors to zero
pos_control->stop_vel_xy_stabilisation();
} else if (!stabilizing_pos_xy() && !do_avoid) {
// set position errors to zero
pos_control->stop_pos_xy_stabilisation();
}
pos_control->input_vel_accel_z(guided_vel_target_cms.z, guided_accel_target_cmss.z, false, false);
// call velocity controller which includes z axis controller
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller with auto yaw
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.get_heading());
}
// pause_control_run - runs the guided mode pause controller
// called from guided_run
void ModeGuided::pause_control_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set the horizontal velocity and acceleration targets to zero
Vector2f vel_xy, accel_xy;
pos_control->input_vel_accel_xy(vel_xy, accel_xy, false);
// set the vertical velocity and acceleration targets to zero
float vel_z = 0.0;
pos_control->input_vel_accel_z(vel_z, 0.0, false, false);
// call velocity controller which includes z axis controller
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), 0.0);
}
// posvelaccel_control_run - runs the guided position, velocity and acceleration controller
// called from guided_run
void ModeGuided::posvelaccel_control_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - update_time_ms > get_timeout_ms()) {
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
if ((auto_yaw.mode() == AutoYaw::Mode::RATE) || (auto_yaw.mode() == AutoYaw::Mode::ANGLE_RATE)) {
auto_yaw.set_mode(AutoYaw::Mode::HOLD);
}
}
// send position and velocity targets to position controller
if (!stabilizing_vel_xy()) {
// set the current commanded xy pos to the target pos and xy vel to the desired vel
guided_pos_target_cm.x = pos_control->get_pos_target_cm().x;
guided_pos_target_cm.y = pos_control->get_pos_target_cm().y;
guided_vel_target_cms.x = pos_control->get_vel_desired_cms().x;
guided_vel_target_cms.y = pos_control->get_vel_desired_cms().y;
} else if (!stabilizing_pos_xy()) {
// set the current commanded xy pos to the target pos
guided_pos_target_cm.x = pos_control->get_pos_target_cm().x;
guided_pos_target_cm.y = pos_control->get_pos_target_cm().y;
}
pos_control->input_pos_vel_accel_xy(guided_pos_target_cm.xy(), guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false);
if (!stabilizing_vel_xy()) {
// set position and velocity errors to zero
pos_control->stop_vel_xy_stabilisation();
} else if (!stabilizing_pos_xy()) {
// set position errors to zero
pos_control->stop_pos_xy_stabilisation();
}
// guided_pos_target z-axis should never be a terrain altitude
if (guided_pos_terrain_alt) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
float pz = guided_pos_target_cm.z;
pos_control->input_pos_vel_accel_z(pz, guided_vel_target_cms.z, guided_accel_target_cmss.z, false);
guided_pos_target_cm.z = pz;
// run position controllers
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller with auto yaw
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.get_heading());
}
// angle_control_run - runs the guided angle controller
// called from guided_run
void ModeGuided::angle_control_run()
{
float climb_rate_cms = 0.0f;
if (!guided_angle_state.use_thrust) {
// constrain climb rate
climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up());
// get avoidance adjusted climb rate
climb_rate_cms = get_avoidance_adjusted_climbrate(climb_rate_cms);
}
// check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - guided_angle_state.update_time_ms > get_timeout_ms()) {
guided_angle_state.attitude_quat.initialise();
guided_angle_state.ang_vel.zero();
climb_rate_cms = 0.0f;
if (guided_angle_state.use_thrust) {
// initialise vertical velocity controller
pos_control->init_z_controller();
guided_angle_state.use_thrust = false;
}
}
// interpret positive climb rate or thrust as triggering take-off
const bool positive_thrust_or_climbrate = is_positive(guided_angle_state.use_thrust ? guided_angle_state.thrust : climb_rate_cms);
if (motors->armed() && positive_thrust_or_climbrate) {
copter.set_auto_armed(true);
}
// if not armed set throttle to zero and exit immediately
if (!motors->armed() || !copter.ap.auto_armed || (copter.ap.land_complete && !positive_thrust_or_climbrate)) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// TODO: use get_alt_hold_state
// landed with positive desired climb rate, takeoff
if (copter.ap.land_complete && (guided_angle_state.climb_rate_cms > 0.0f)) {
zero_throttle_and_relax_ac();
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
set_land_complete(false);
pos_control->init_z_controller();
}
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// call attitude controller
if (guided_angle_state.attitude_quat.is_zero()) {
attitude_control->input_rate_bf_roll_pitch_yaw(ToDeg(guided_angle_state.ang_vel.x) * 100.0f, ToDeg(guided_angle_state.ang_vel.y) * 100.0f, ToDeg(guided_angle_state.ang_vel.z) * 100.0f);
} else {
attitude_control->input_quaternion(guided_angle_state.attitude_quat, guided_angle_state.ang_vel);
}
// call position controller
if (guided_angle_state.use_thrust) {
attitude_control->set_throttle_out(guided_angle_state.thrust, true, copter.g.throttle_filt);
} else {
pos_control->set_pos_target_z_from_climb_rate_cm(climb_rate_cms);
pos_control->update_z_controller();
}
}
// helper function to set yaw state and targets
void ModeGuided::set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle)
{
if (use_yaw && relative_angle) {
auto_yaw.set_fixed_yaw(yaw_cd * 0.01f, 0.0f, 0, relative_angle);
} else if (use_yaw && use_yaw_rate) {
auto_yaw.set_yaw_angle_rate(yaw_cd * 0.01f, yaw_rate_cds * 0.01f);
} else if (use_yaw && !use_yaw_rate) {
auto_yaw.set_yaw_angle_rate(yaw_cd * 0.01f, 0.0f);
} else if (use_yaw_rate) {
auto_yaw.set_rate(yaw_rate_cds);
} else {
auto_yaw.set_mode_to_default(false);
}
}
// returns true if pilot's yaw input should be used to adjust vehicle's heading
bool ModeGuided::use_pilot_yaw(void) const
{
return (copter.g2.guided_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0;
}
// Guided Limit code
// limit_clear - clear/turn off guided limits
void ModeGuided::limit_clear()
{
guided_limit.timeout_ms = 0;
guided_limit.alt_min_cm = 0.0f;
guided_limit.alt_max_cm = 0.0f;
guided_limit.horiz_max_cm = 0.0f;
}
// limit_set - set guided timeout and movement limits
void ModeGuided::limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm)
{
guided_limit.timeout_ms = timeout_ms;
guided_limit.alt_min_cm = alt_min_cm;
guided_limit.alt_max_cm = alt_max_cm;
guided_limit.horiz_max_cm = horiz_max_cm;
}
// limit_init_time_and_pos - initialise guided start time and position as reference for limit checking
// only called from AUTO mode's auto_nav_guided_start function
void ModeGuided::limit_init_time_and_pos()
{
// initialise start time
guided_limit.start_time = AP_HAL::millis();
// initialise start position from current position
guided_limit.start_pos = inertial_nav.get_position_neu_cm();
}
// limit_check - returns true if guided mode has breached a limit
// used when guided is invoked from the NAV_GUIDED_ENABLE mission command
bool ModeGuided::limit_check()
{
// check if we have passed the timeout
if ((guided_limit.timeout_ms > 0) && (millis() - guided_limit.start_time >= guided_limit.timeout_ms)) {
return true;
}
// get current location
const Vector3f& curr_pos = inertial_nav.get_position_neu_cm();
// check if we have gone below min alt
if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) {
return true;
}
// check if we have gone above max alt
if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) {
return true;
}
// check if we have gone beyond horizontal limit
if (guided_limit.horiz_max_cm > 0.0f) {
const float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos.xy(), curr_pos.xy());
if (horiz_move > guided_limit.horiz_max_cm) {
return true;
}
}
// if we got this far we must be within limits
return false;
}
const Vector3p &ModeGuided::get_target_pos() const
{
return guided_pos_target_cm;
}
const Vector3f& ModeGuided::get_target_vel() const
{
return guided_vel_target_cms;
}
const Vector3f& ModeGuided::get_target_accel() const
{
return guided_accel_target_cmss;
}
uint32_t ModeGuided::wp_distance() const
{
switch(guided_mode) {
case SubMode::WP:
return wp_nav->get_wp_distance_to_destination();
case SubMode::Pos:
return get_horizontal_distance_cm(inertial_nav.get_position_xy_cm(), guided_pos_target_cm.tofloat().xy());
case SubMode::PosVelAccel:
return pos_control->get_pos_error_xy_cm();
break;
default:
return 0;
}
}
int32_t ModeGuided::wp_bearing() const
{
switch(guided_mode) {
case SubMode::WP:
return wp_nav->get_wp_bearing_to_destination();
case SubMode::Pos:
return get_bearing_cd(inertial_nav.get_position_xy_cm(), guided_pos_target_cm.tofloat().xy());
case SubMode::PosVelAccel:
return pos_control->get_bearing_to_target_cd();
break;
case SubMode::TakeOff:
case SubMode::Accel:
case SubMode::VelAccel:
case SubMode::Angle:
// these do not have bearings
return 0;
}
// compiler guarantees we don't get here
return 0.0;
}
float ModeGuided::crosstrack_error() const
{
switch (guided_mode) {
case SubMode::WP:
return wp_nav->crosstrack_error();
case SubMode::Pos:
case SubMode::TakeOff:
case SubMode::Accel:
case SubMode::VelAccel:
case SubMode::PosVelAccel:
return pos_control->crosstrack_error();
case SubMode::Angle:
// no track to have a crosstrack to
return 0;
}
// compiler guarantees we don't get here
return 0;
}
// return guided mode timeout in milliseconds. Only used for velocity, acceleration, angle control, and angular rates
uint32_t ModeGuided::get_timeout_ms() const
{
return MAX(copter.g2.guided_timeout, 0.1) * 1000;
}
// pause guide mode
bool ModeGuided::pause()
{
_paused = true;
return true;
}
// resume guided mode
bool ModeGuided::resume()
{
_paused = false;
return true;
}
#endif