ardupilot/ArduPlane/avoidance_adsb.cpp
Peter Barker 9e45882340 Plane: do not use guided waypoint for loiter location
Currently this waypoint is set 10,000m away by the avoidance behaviour

Instead, immediately enter loiter mode
2022-04-29 07:54:06 +09:00

227 lines
7.6 KiB
C++

#include <stdio.h>
#include "Plane.h"
#if HAL_ADSB_ENABLED
void Plane::avoidance_adsb_update(void)
{
adsb.update();
avoidance_adsb.update();
}
MAV_COLLISION_ACTION AP_Avoidance_Plane::handle_avoidance(const AP_Avoidance::Obstacle *obstacle, MAV_COLLISION_ACTION requested_action)
{
MAV_COLLISION_ACTION actual_action = requested_action;
bool failsafe_state_change = false;
// check for changes in failsafe
if (!plane.failsafe.adsb) {
plane.failsafe.adsb = true;
failsafe_state_change = true;
// record flight mode in case it's required for the recovery
prev_control_mode_number = plane.control_mode->mode_number();
}
// take no action in some flight modes
bool flightmode_prohibits_action = false;
if (plane.control_mode == &plane.mode_manual ||
(plane.control_mode == &plane.mode_auto && !plane.auto_state.takeoff_complete) ||
(plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) || // TODO: consider allowing action during approach
plane.control_mode == &plane.mode_autotune) {
flightmode_prohibits_action = true;
}
#if HAL_QUADPLANE_ENABLED
if (plane.control_mode == &plane.mode_qland) {
flightmode_prohibits_action = true;
}
#endif
if (flightmode_prohibits_action) {
actual_action = MAV_COLLISION_ACTION_NONE;
}
// take action based on requested action
switch (actual_action) {
case MAV_COLLISION_ACTION_RTL:
if (failsafe_state_change) {
plane.set_mode(plane.mode_rtl, ModeReason::AVOIDANCE);
}
break;
case MAV_COLLISION_ACTION_HOVER:
if (failsafe_state_change) {
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.is_flying()) {
plane.set_mode(plane.mode_qloiter, ModeReason::AVOIDANCE);
break;
}
#endif
plane.set_mode(plane.mode_loiter, ModeReason::AVOIDANCE);
}
break;
case MAV_COLLISION_ACTION_ASCEND_OR_DESCEND:
// climb or descend to avoid obstacle
if (handle_avoidance_vertical(obstacle, failsafe_state_change)) {
plane.set_guided_WP();
} else {
actual_action = MAV_COLLISION_ACTION_NONE;
}
break;
case MAV_COLLISION_ACTION_MOVE_HORIZONTALLY:
// move horizontally to avoid obstacle
if (handle_avoidance_horizontal(obstacle, failsafe_state_change)) {
plane.set_guided_WP();
} else {
actual_action = MAV_COLLISION_ACTION_NONE;
}
break;
case MAV_COLLISION_ACTION_MOVE_PERPENDICULAR:
{
// move horizontally and vertically to avoid obstacle
const bool success_vert = handle_avoidance_vertical(obstacle, failsafe_state_change);
const bool success_hor = handle_avoidance_horizontal(obstacle, failsafe_state_change);
if (success_vert || success_hor) {
plane.set_guided_WP();
} else {
actual_action = MAV_COLLISION_ACTION_NONE;
}
}
break;
// unsupported actions and those that require no response
case MAV_COLLISION_ACTION_NONE:
return actual_action;
case MAV_COLLISION_ACTION_REPORT:
default:
break;
}
if (failsafe_state_change) {
gcs().send_text(MAV_SEVERITY_ALERT, "Avoid: Performing action: %d", actual_action);
}
// return with action taken
return actual_action;
}
void AP_Avoidance_Plane::handle_recovery(RecoveryAction recovery_action)
{
// check we are coming out of failsafe
if (plane.failsafe.adsb) {
plane.failsafe.adsb = false;
gcs().send_text(MAV_SEVERITY_INFO, "Avoid: Resuming with action: %u", (unsigned)recovery_action);
// restore flight mode if requested and user has not changed mode since
if (plane.control_mode_reason == ModeReason::AVOIDANCE) {
switch (recovery_action) {
case RecoveryAction::REMAIN_IN_AVOID_ADSB:
// do nothing, we'll stay in the AVOID_ADSB mode which is guided which will loiter
break;
case RecoveryAction::RESUME_PREVIOUS_FLIGHTMODE:
plane.set_mode_by_number(prev_control_mode_number, ModeReason::AVOIDANCE_RECOVERY);
break;
case RecoveryAction::RTL:
plane.set_mode(plane.mode_rtl, ModeReason::AVOIDANCE_RECOVERY);
break;
case RecoveryAction::RESUME_IF_AUTO_ELSE_LOITER:
if (prev_control_mode_number == Mode::Number::AUTO) {
plane.set_mode(plane.mode_auto, ModeReason::AVOIDANCE_RECOVERY);
} else {
// let ModeAvoidADSB continue in its guided
// behaviour, but reset the loiter location,
// rather than where the avoidance location was
plane.guided_WP_loc = plane.current_loc;
plane.set_guided_WP();
}
break;
default:
// user has specified an invalid recovery action;
// loiter where we are
plane.guided_WP_loc = plane.current_loc;
plane.set_guided_WP();
break;
} // switch
}
}
}
// check flight mode is avoid_adsb
bool AP_Avoidance_Plane::check_flightmode(bool allow_mode_change)
{
// ensure plane is in avoid_adsb mode
if (allow_mode_change && plane.control_mode != &plane.mode_avoidADSB) {
plane.set_mode(plane.mode_avoidADSB, ModeReason::AVOIDANCE);
}
// check flight mode
return (plane.control_mode == &plane.mode_avoidADSB);
}
bool AP_Avoidance_Plane::handle_avoidance_vertical(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change)
{
// ensure copter is in avoid_adsb mode
if (!check_flightmode(allow_mode_change)) {
return false;
}
// get best vector away from obstacle
if (plane.current_loc.alt > obstacle->_location.alt) {
// should climb
plane.guided_WP_loc.alt = plane.current_loc.alt + 1000; // set alt demand to be 10m above us, climb rate will be TECS_CLMB_MAX
return true;
} else if (plane.current_loc.alt > plane.g.RTL_altitude_cm) {
// should descend while above RTL alt
// TODO: consider using a lower altitude than RTL_altitude_cm since it's default (100m) is quite high
plane.guided_WP_loc.alt = plane.current_loc.alt - 1000; // set alt demand to be 10m below us, sink rate will be TECS_SINK_MAX
return true;
}
return false;
}
bool AP_Avoidance_Plane::handle_avoidance_horizontal(const AP_Avoidance::Obstacle *obstacle, bool allow_mode_change)
{
// ensure plane is in avoid_adsb mode
if (!check_flightmode(allow_mode_change)) {
return false;
}
// get best vector away from obstacle
Vector3f velocity_neu;
if (get_vector_perpendicular(obstacle, velocity_neu)) {
// remove vertical component
velocity_neu.z = 0.0f;
// check for divide by zero
if (is_zero(velocity_neu.x) && is_zero(velocity_neu.y)) {
return false;
}
// re-normalize
velocity_neu.normalize();
// push vector further away.
velocity_neu *= 10000;
// set target
plane.guided_WP_loc.offset(velocity_neu.x, velocity_neu.y);
return true;
}
// if we got this far we failed to set the new target
return false;
}
#endif // HAL_ADSB_ENABLED