ardupilot/libraries/AP_Motors/AP_Motors_Class.h

196 lines
9.6 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Notify/AP_Notify.h> // Notify library
#include <RC_Channel/RC_Channel.h> // RC Channel Library
#include <Filter/Filter.h> // filter library
// offsets for motors in motor_out and _motor_filtered arrays
#define AP_MOTORS_MOT_1 0U
#define AP_MOTORS_MOT_2 1U
#define AP_MOTORS_MOT_3 2U
#define AP_MOTORS_MOT_4 3U
#define AP_MOTORS_MOT_5 4U
#define AP_MOTORS_MOT_6 5U
#define AP_MOTORS_MOT_7 6U
#define AP_MOTORS_MOT_8 7U
#define AP_MOTORS_MAX_NUM_MOTORS 8
// frame definitions
#define AP_MOTORS_PLUS_FRAME 0
#define AP_MOTORS_X_FRAME 1
#define AP_MOTORS_V_FRAME 2
#define AP_MOTORS_H_FRAME 3 // same as X frame but motors spin in opposite direction
#define AP_MOTORS_VTAIL_FRAME 4 // Lynxmotion Hunter VTail 400/500
#define AP_MOTORS_ATAIL_FRAME 5 // A-Shaped VTail Quads
#define AP_MOTORS_NEW_PLUS_FRAME 10 // NEW frames are same as original 4 but with motor orders changed to be clockwise from the front
#define AP_MOTORS_NEW_X_FRAME 11
#define AP_MOTORS_NEW_V_FRAME 12
#define AP_MOTORS_NEW_H_FRAME 13 // same as X frame but motors spin in opposite direction
#define AP_MOTORS_QUADPLANE 14 // motors on 5..8
// motor update rate
#define AP_MOTORS_SPEED_DEFAULT 490 // default output rate to the motors
/// @class AP_Motors
class AP_Motors {
public:
// Constructor
AP_Motors(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
// set update rate to motors - a value in hertz
virtual void set_update_rate( uint16_t speed_hz ) { _speed_hz = speed_hz; };
// set frame orientation (normally + or X)
virtual void set_frame_orientation( uint8_t new_orientation ) { _flags.frame_orientation = new_orientation; };
// arm, disarm or check status status of motors
bool armed() const { return _flags.armed; };
void armed(bool arm);
// set motor interlock status
void set_interlock(bool set) { _flags.interlock = set;}
// get motor interlock status. true means motors run, false motors don't run
bool get_interlock() const { return _flags.interlock; };
// set_roll, set_pitch, set_yaw, set_throttle
void set_roll(float roll_in) { _roll_in = roll_in; }; // range -1 ~ +1
void set_pitch(float pitch_in) { _pitch_in = pitch_in; }; // range -1 ~ +1
void set_yaw(float yaw_in) { _yaw_in = yaw_in; }; // range -1 ~ +1
void set_throttle(float throttle_in) { _throttle_in = throttle_in; }; // range 0 ~ 1
void set_throttle_ave_max(float throttle_ave_max) { _throttle_ave_max = constrain_float(throttle_ave_max,0.0f,1.0f); }; // range 0 ~ 1
void set_throttle_filter_cutoff(float filt_hz) { _throttle_filter.set_cutoff_frequency(filt_hz); }
// accessors for roll, pitch, yaw and throttle inputs to motors
float get_roll() const { return _roll_in; }
float get_pitch() const { return _pitch_in; }
float get_yaw() const { return _yaw_in; }
float get_throttle() const { return constrain_float(_throttle_filter.get(),0.0f,1.0f); }
virtual float get_throttle_hover() const = 0;
// spool up states
enum spool_up_down_desired {
DESIRED_SHUT_DOWN = 0, // all motors stop
DESIRED_SPIN_WHEN_ARMED = 1, // all motors at spin when armed
DESIRED_THROTTLE_UNLIMITED = 2, // motors are no longer constrained by start up procedure
};
virtual void set_desired_spool_state(enum spool_up_down_desired spool) { _spool_desired = spool; };
//
// voltage, current and air pressure compensation or limiting features - multicopters only
//
// set_voltage - set voltage to be used for output scaling
void set_voltage(float volts){ _batt_voltage = volts; }
// set_current - set current to be used for output scaling
void set_current(float current){ _batt_current = current; }
// set_density_ratio - sets air density as a proportion of sea level density
void set_air_density_ratio(float ratio) { _air_density_ratio = ratio; }
// structure for holding motor limit flags
struct AP_Motors_limit {
uint8_t roll_pitch : 1; // we have reached roll or pitch limit
uint8_t yaw : 1; // we have reached yaw limit
uint8_t throttle_lower : 1; // we have reached throttle's lower limit
uint8_t throttle_upper : 1; // we have reached throttle's upper limit
} limit;
//
// virtual functions that should be implemented by child classes
//
// init
virtual void Init() = 0;
// enable - starts allowing signals to be sent to motors
virtual void enable() = 0;
// output - sends commands to the motors
virtual void output() = 0;
// output_min - sends minimum values out to the motors
virtual void output_min() = 0;
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0;
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
virtual uint16_t get_motor_mask() = 0;
// pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle
void set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input);
// set loop rate. Used to support loop rate as a parameter
void set_loop_rate(uint16_t loop_rate) { _loop_rate = loop_rate; }
protected:
// output functions that should be overloaded by child classes
virtual void output_armed_stabilizing()=0;
virtual void rc_write(uint8_t chan, uint16_t pwm);
virtual void rc_set_freq(uint32_t mask, uint16_t freq_hz);
virtual void rc_enable_ch(uint8_t chan);
virtual uint32_t rc_map_mask(uint32_t mask) const;
// add a motor to the motor map
void add_motor_num(int8_t motor_num);
// update the throttle input filter
virtual void update_throttle_filter() = 0;
// save parameters as part of disarming
virtual void save_params_on_disarm() {}
// convert input in -1 to +1 range to pwm output
int16_t calc_pwm_output_1to1(float input, const RC_Channel& servo);
// convert input in 0 to +1 range to pwm output
int16_t calc_pwm_output_0to1(float input, const RC_Channel& servo);
// flag bitmask
struct AP_Motors_flags {
uint8_t armed : 1; // 0 if disarmed, 1 if armed
uint8_t frame_orientation : 4; // PLUS_FRAME 0, X_FRAME 1, V_FRAME 2, H_FRAME 3, NEW_PLUS_FRAME 10, NEW_X_FRAME, NEW_V_FRAME, NEW_H_FRAME
uint8_t interlock : 1; // 1 if the motor interlock is enabled (i.e. motors run), 0 if disabled (motors don't run)
} _flags;
// internal variables
uint16_t _loop_rate; // rate in Hz at which output() function is called (normally 400hz)
uint16_t _speed_hz; // speed in hz to send updates to motors
float _roll_in; // desired roll control from attitude controllers, -1 ~ +1
float _pitch_in; // desired pitch control from attitude controller, -1 ~ +1
float _yaw_in; // desired yaw control from attitude controller, -1 ~ +1
float _throttle_in; // last throttle input from set_throttle caller
float _throttle_ave_max; // last throttle input from set_throttle_ave_max
LowPassFilterFloat _throttle_filter; // throttle input filter
spool_up_down_desired _spool_desired; // desired spool state
// battery voltage, current and air pressure compensation variables
float _batt_voltage; // latest battery voltage reading
float _batt_current; // latest battery current reading
float _air_density_ratio; // air density / sea level density - decreases in altitude
// mapping to output channels
uint8_t _motor_map[AP_MOTORS_MAX_NUM_MOTORS];
uint16_t _motor_map_mask;
uint16_t _motor_fast_mask;
// pass through variables
float _roll_radio_passthrough = 0.0f; // roll input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed
float _pitch_radio_passthrough = 0.0f; // pitch input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed
float _throttle_radio_passthrough = 0.0f; // throttle/collective input from pilot in 0 ~ 1 range. used for setup and providing servo feedback while landed
float _yaw_radio_passthrough = 0.0f; // yaw input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed
enum pwm_type { PWM_TYPE_NORMAL=0, PWM_TYPE_ONESHOT=1, PWM_TYPE_ONESHOT125=2 };
AP_Int8 _pwm_type; // PWM output type
};