ardupilot/Tools/ArduTracker/Attitude.pde
James Bielman 5631f865b2 Update floating point calculations to use floats instead of doubles.
- Allows use of hardware floating point on the Cortex-M4.
- Added "f" suffix to floating point literals.
- Call floating point versions of stdlib math functions.
2013-01-16 13:52:01 +11:00

381 lines
13 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//****************************************************************
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
//****************************************************************
void stabilize()
{
float ch1_inf = 1.0f;
float ch2_inf = 1.0f;
float ch4_inf = 1.0f;
#if AIRSPEED_SENSOR == ENABLED
float speed_scaler = STANDARD_SPEED_SQUARED / (airspeed * airspeed);
speed_scaler = constrain(speed_scaler, 0.11f, 9.0f);
#endif
#if AIRSPEED_SENSOR == DISABLED
float speed_scaler;
if (servo_out[CH_THROTTLE] > 0)
speed_scaler = 0.5f + (THROTTLE_CRUISE / servo_out[CH_THROTTLE] / 2.0f); // First order taylor expansion of square root
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
else
speed_scaler = 1.67f;
speed_scaler = constrain(speed_scaler, 0.6f, 1.67f); // This case is constrained tighter as we don't have real speed info
#endif
if(crash_timer > 0){
nav_roll = 0;
}
// For Testing Only
// roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10;
// Serial.print(" roll_sensor ");
// Serial.print(roll_sensor,DEC);
// Calculate dersired servo output for the roll
// ---------------------------------------------
servo_out[CH_ROLL] = pidServoRoll.get_pid((nav_roll - dcm.roll_sensor), deltaMiliSeconds, speed_scaler);
servo_out[CH_PITCH] = pidServoPitch.get_pid((nav_pitch + fabsf(dcm.roll_sensor * get(PARAM_KFF_PTCHCOMP)) - (dcm.pitch_sensor - get(PARAM_TRIM_PITCH))), deltaMiliSeconds, speed_scaler);
//Serial.print(" servo_out[CH_ROLL] ");
//Serial.print(servo_out[CH_ROLL],DEC);
// Mix Stick input to allow users to override control surfaces
// -----------------------------------------------------------
if ((control_mode < FLY_BY_WIRE_A) || (ENABLE_STICK_MIXING == 1 && control_mode > FLY_BY_WIRE_B)) {
ch1_inf = (float)radio_in[CH_ROLL] - (float)radio_trim(CH_ROLL);
ch1_inf = fabsf(ch1_inf);
ch1_inf = min(ch1_inf, 400.0);
ch1_inf = ((400.0 - ch1_inf) /400.0);
ch2_inf = (float)radio_in[CH_PITCH] - radio_trim(CH_PITCH);
ch2_inf = fabsf(ch2_inf);
ch2_inf = min(ch2_inf, 400.0);
ch2_inf = ((400.0 - ch2_inf) /400.0);
// scale the sensor input based on the stick input
// -----------------------------------------------
servo_out[CH_ROLL] *= ch1_inf;
servo_out[CH_PITCH] *= ch2_inf;
// Mix in stick inputs
// -------------------
servo_out[CH_ROLL] += reverse_roll * (radio_in[CH_ROLL] - radio_trim(CH_ROLL)) * 9;
servo_out[CH_PITCH] += reverse_pitch * (radio_in[CH_PITCH] - radio_trim(CH_PITCH)) * 9;
//Serial.print(" servo_out[CH_ROLL] ");
//Serial.println(servo_out[CH_ROLL],DEC);
}
// stick mixing performed for rudder for all cases including FBW unless disabled for higher modes
// important for steering on the ground during landing
// -----------------------------------------------
if (control_mode <= FLY_BY_WIRE_B || ENABLE_STICK_MIXING == 1) {
ch4_inf = (float)radio_in[CH_RUDDER] - (float)radio_trim(CH_RUDDER);
ch4_inf = fabsf(ch4_inf);
ch4_inf = min(ch4_inf, 400.0);
ch4_inf = ((400.0 - ch4_inf) /400.0);
}
// Apply output to Rudder
// ----------------------
calc_nav_yaw(speed_scaler);
servo_out[CH_RUDDER] *= ch4_inf;
servo_out[CH_RUDDER] += reverse_rudder * (radio_in[CH_RUDDER] - radio_trim(CH_RUDDER)) * 9;
// Call slew rate limiter if used
// ------------------------------
//#if(ROLL_SLEW_LIMIT != 0)
// servo_out[CH_ROLL] = roll_slew_limit(servo_out[CH_ROLL]);
//#endif
}
void crash_checker()
{
if(dcm.pitch_sensor < -4500){
crash_timer = 255;
}
if(crash_timer > 0)
crash_timer--;
}
#if AIRSPEED_SENSOR == DISABLED
void calc_throttle()
{
int throttle_target = get(PARAM_TRIM_THROTTLE) + throttle_nudge;
// no airspeed sensor, we use nav pitch to determine the proper throttle output
// AUTO, RTL, etc
// ---------------------------------------------------------------------------
if (nav_pitch >= 0) {
servo_out[CH_THROTTLE] = throttle_target + (get(PARAM_THR_MAX) - throttle_target) * nav_pitch / get(PARAM_LIM_PITCH_MAX);
} else {
servo_out[CH_THROTTLE] = throttle_target - (throttle_target - get(PARAM_THR_MIN)) * nav_pitch / get(PARAM_LIM_PITCH_MIN);
}
servo_out[CH_THROTTLE] = constrain(servo_out[CH_THROTTLE], get(PARAM_THR_MIN), get(PARAM_THR_MAX));
}
#endif
#if AIRSPEED_SENSOR == ENABLED
void calc_throttle()
{
// throttle control with airspeed compensation
// -------------------------------------------
energy_error = airspeed_energy_error + (float)altitude_error * 0.098f;
// positive energy errors make the throttle go higher
servo_out[CH_THROTTLE] = get(PARAM_TRIM_THROTTLE) + pidTeThrottle.get_pid(energy_error, dTnav);
servo_out[CH_THROTTLE] = max(servo_out[CH_THROTTLE], 0);
// are we going too slow? up the throttle to get some more groundspeed
// move into PID loop in the future
// lower the contstant value to limit the effect : 50 = default
//JASON - We really should change this to act on airspeed in this case. Let's visit about it....
/*int gs_boost = 30 * (1.0 - ((float)gps.ground_speed / (float)airspeed_cruise));
gs_boost = max(0,gs_boost);
servo_out[CH_THROTTLE] += gs_boost;*/
servo_out[CH_THROTTLE] = constrain(servo_out[CH_THROTTLE],
get(PARAM_THR_MIN), get(PARAM_THR_MAX));
}
#endif
/*****************************************
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
*****************************************/
// Yaw is separated into a function for future implementation of heading hold on rolling take-off
// ----------------------------------------------------------------------------------------
void calc_nav_yaw(float speed_scaler)
{
#if HIL_MODE != HIL_MODE_ATTITUDE
Vector3f temp = imu.get_accel();
long error = -temp.y;
// Control is a feedforward from the aileron control + a PID to coordinate the turn (drive y axis accel to zero)
servo_out[CH_RUDDER] = get(PARAM_KFF_RDDRMIX) * servo_out[CH_ROLL] + pidServoRudder.get_pid(error, deltaMiliSeconds, speed_scaler);
#else
servo_out[CH_RUDDER] = get(PARAM_KFF_RDDRMIX) * servo_out[CH_ROLL];
// XXX probably need something here based on heading
#endif
}
void calc_nav_pitch()
{
// Calculate the Pitch of the plane
// --------------------------------
#if AIRSPEED_SENSOR == ENABLED
nav_pitch = -pidNavPitchAirspeed.get_pid(airspeed_error, dTnav);
#else
nav_pitch = pidNavPitchAltitude.get_pid(altitude_error, dTnav);
#endif
nav_pitch = constrain(nav_pitch, get(PARAM_LIM_PITCH_MIN), get(PARAM_LIM_PITCH_MAX));
}
void calc_nav_roll()
{
// Adjust gain based on ground speed - We need lower nav gain going in to a headwind, etc.
// This does not make provisions for wind speed in excess of airframe speed
nav_gain_scaler = (float)gps.ground_speed / (STANDARD_SPEED * 100.0);
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
// negative error = left turn
// positive error = right turn
// Calculate the required roll of the plane
// ----------------------------------------
nav_roll = pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100
nav_roll = constrain(nav_roll,-get(PARAM_LIM_ROLL), get(PARAM_LIM_ROLL));
}
/*****************************************
* Roll servo slew limit
*****************************************/
/*
float roll_slew_limit(float servo)
{
static float last;
float temp = constrain(servo, last-ROLL_SLEW_LIMIT * deltaMiliSeconds/1000.f, last + ROLL_SLEW_LIMIT * deltaMiliSeconds/1000.f);
last = servo;
return temp;
}*/
/*****************************************
* Throttle slew limit
*****************************************/
/*float throttle_slew_limit(float throttle)
{
static float last;
float temp = constrain(throttle, last-THROTTLE_SLEW_LIMIT * deltaMiliSeconds/1000.f, last + THROTTLE_SLEW_LIMIT * deltaMiliSeconds/1000.f);
last = throttle;
return temp;
}
*/
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
void reset_I(void)
{
pidNavRoll.reset_I();
pidNavPitchAirspeed.reset_I();
pidNavPitchAltitude.reset_I();
pidTeThrottle.reset_I();
pidAltitudeThrottle.reset_I();
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
void set_servos_4(void)
{
if(control_mode == MANUAL){
// do a direct pass through of radio values
for(int y=0; y<4; y++) {
radio_out[y] = radio_in[y];
}
} else {
// Patch Antenna Control Code
float phi, theta; //,servo_phi, servo_theta;
float x1,x2,y1,y2,x,y,r,z;
y1 = 110600*current_loc.lat/t7;
x1 = (PI/180)*6378137*(cosf(atanf(0.99664719f*tanf(current_loc.lat/t7*PI/180))))*(current_loc.lng/t7);
y2 = 110600*trackVehicle_loc.lat/t7;
x2 = (PI/180)*6378137*(cosf(atanf(0.99664719f*tanf(current_loc.lat/t7*PI/180))))*(trackVehicle_loc.lng/t7);
x = abs(x2 - x1);
y = abs(y2 - y1);
r = sqrtf(x*x+y*y);
z = trackVehicle_loc.alt/100.0f - current_loc.alt;
phi = (atanf(z/r)*180/PI);
theta = (atanf(x/y)*180/PI);
// Check to see which quadrant of the angle
if (trackVehicle_loc.lat >= current_loc.lat && trackVehicle_loc.lng >= current_loc.lng)
{
theta = abs(theta);
}
else if (trackVehicle_loc.lat >= current_loc.lat && trackVehicle_loc.lng <= current_loc.lng)
{
theta = 360 - abs(theta);
}
else if (trackVehicle_loc.lat <= current_loc.lat && trackVehicle_loc.lng >= current_loc.lng)
{
theta = 180 - abs(theta);
}
else if (trackVehicle_loc.lat <= current_loc.lat && trackVehicle_loc.lng <= current_loc.lng)
{
theta = 180 + abs(theta);
}
// Calibration of the top servo
//servo_phi = (91*phi + 7650)/9;
// Calibration of the bottom servo
//servo_theta = (2*theta + 5940)/3;
Serial.print("target lat: "); Serial.println(current_loc.lat);
Serial.print("tracker lat: "); Serial.println(trackVehicle_loc.lat);
Serial.print("phi: "); Serial.println(phi);
Serial.print("theta: "); Serial.println(theta);
// Outputing to the servos
servo_out[CH_ROLL] = 10000*phi/90.0f;
servo_out[CH_PITCH] = 10000*theta/360.0f;
servo_out[CH_RUDDER] = 0;
servo_out[CH_THROTTLE] = 0;
radio_out[CH_ROLL] = radio_trim(CH_ROLL) + (reverse_roll * ((float)servo_out[CH_ROLL] * 0.11111));
radio_out[CH_PITCH] = radio_trim(CH_PITCH) + (reverse_pitch * ((float)servo_out[CH_PITCH] * 0.11111));
radio_out[CH_RUDDER] = 0;
radio_out[CH_THROTTLE] = 0;
/*
if (mix_mode == 0){
radio_out[CH_ROLL] = radio_trim(CH_ROLL) + (reverse_roll * ((float)servo_out[CH_ROLL] * 0.11111));
radio_out[CH_PITCH] = radio_trim(CH_PITCH) + (reverse_pitch * ((float)servo_out[CH_PITCH] * 0.11111));
radio_out[CH_RUDDER] = radio_trim(CH_RUDDER) + (reverse_rudder * ((float)servo_out[CH_RUDDER] * 0.11111));
}else{
//Elevon mode
float ch1;
float ch2;
ch1 = reverse_elevons * (servo_out[CH_PITCH] - servo_out[CH_ROLL]);
ch2 = servo_out[CH_PITCH] + servo_out[CH_ROLL];
radio_out[CH_ROLL] = elevon1_trim + (reverse_ch1_elevon * (ch1 * 0.11111));
radio_out[CH_PITCH] = elevon2_trim + (reverse_ch2_elevon * (ch2 * 0.11111));
}
#if THROTTLE_OUT == 0
radio_out[CH_THROTTLE] = 0;
#endif
// convert 0 to 100% into PWM
servo_out[CH_THROTTLE] = constrain(servo_out[CH_THROTTLE], 0, 100);
radio_out[CH_THROTTLE] = servo_out[CH_THROTTLE] * ((radio_max(CH_THROTTLE) - radio_min(CH_THROTTLE)) / 100);
radio_out[CH_THROTTLE] += radio_min(CH_THROTTLE);
//Radio_in: 1763 PWM output: 2000 Throttle: 78.7695999145 PWM Min: 1110 PWM Max: 1938
#if THROTTLE_REVERSE == 1
radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE];
#endif
*/
}
// send values to the PWM timers for output
// ----------------------------------------
for(int y=0; y<4; y++) {
APM_RC.OutputCh(y, radio_out[y]); // send to Servos
}
}
void demo_servos(byte i) {
while(i > 0){
gcs.send_text(SEVERITY_LOW,"Demo Servos!");
APM_RC.OutputCh(1, 1400);
delay(400);
APM_RC.OutputCh(1, 1600);
delay(200);
APM_RC.OutputCh(1, 1500);
delay(400);
i--;
}
}
int readOutputCh(unsigned char ch)
{
int pwm;
switch(ch)
{
case 0: pwm = OCR5B; break; // ch0
case 1: pwm = OCR5C; break; // ch1
case 2: pwm = OCR1B; break; // ch2
case 3: pwm = OCR1C; break; // ch3
case 4: pwm = OCR4C; break; // ch4
case 5: pwm = OCR4B; break; // ch5
case 6: pwm = OCR3C; break; // ch6
case 7: pwm = OCR3B; break; // ch7
case 8: pwm = OCR5A; break; // ch8, PL3
case 9: pwm = OCR1A; break; // ch9, PB5
case 10: pwm = OCR3A; break; // ch10, PE3
}
pwm >>= 1; // pwm / 2;
return pwm;
}