mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 01:48:29 -04:00
58b0ac07ec
allow for a primary and secondary airspeed sensor
179 lines
5.6 KiB
C++
179 lines
5.6 KiB
C++
/*
|
|
* auto_calibration.cpp - airspeed auto calibration
|
|
*
|
|
* Algorithm by Paul Riseborough
|
|
*
|
|
*/
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
|
|
#include "AP_Airspeed.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// constructor - fill in all the initial values
|
|
Airspeed_Calibration::Airspeed_Calibration()
|
|
: P(100, 0, 0,
|
|
0, 100, 0,
|
|
0, 0, 0.000001f)
|
|
, Q0(0.01f)
|
|
, Q1(0.0000005f)
|
|
, state(0, 0, 0)
|
|
, DT(1)
|
|
{
|
|
}
|
|
|
|
/*
|
|
initialise the ratio
|
|
*/
|
|
void Airspeed_Calibration::init(float initial_ratio)
|
|
{
|
|
state.z = 1.0f / sqrtf(initial_ratio);
|
|
}
|
|
|
|
/*
|
|
update the state of the airspeed calibration - needs to be called
|
|
once a second
|
|
*/
|
|
float Airspeed_Calibration::update(float airspeed, const Vector3f &vg, int16_t max_airspeed_allowed_during_cal)
|
|
{
|
|
// Perform the covariance prediction
|
|
// Q is a diagonal matrix so only need to add three terms in
|
|
// C code implementation
|
|
// P = P + Q;
|
|
P.a.x += Q0;
|
|
P.b.y += Q0;
|
|
P.c.z += Q1;
|
|
|
|
// Perform the predicted measurement using the current state estimates
|
|
// No state prediction required because states are assumed to be time
|
|
// invariant plus process noise
|
|
// Ignore vertical wind component
|
|
float TAS_pred = state.z * norm(vg.x - state.x, vg.y - state.y, vg.z);
|
|
float TAS_mea = airspeed;
|
|
|
|
// Calculate the observation Jacobian H_TAS
|
|
float SH1 = sq(vg.y - state.y) + sq(vg.x - state.x);
|
|
if (SH1 < 0.000001f) {
|
|
// avoid division by a small number
|
|
return state.z;
|
|
}
|
|
float SH2 = 1/sqrtf(SH1);
|
|
|
|
// observation Jacobian
|
|
Vector3f H_TAS(
|
|
-(state.z*SH2*(2*vg.x - 2*state.x))/2,
|
|
-(state.z*SH2*(2*vg.y - 2*state.y))/2,
|
|
1/SH2);
|
|
|
|
// Calculate the fusion innovation covariance assuming a TAS measurement
|
|
// noise of 1.0 m/s
|
|
// S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
|
|
Vector3f PH = P * H_TAS;
|
|
float S = H_TAS * PH + 1.0f;
|
|
|
|
// Calculate the Kalman gain
|
|
// [3 x 3] * [3 x 1] / [1 x 1]
|
|
Vector3f KG = PH / S;
|
|
|
|
// Update the states
|
|
state += KG*(TAS_mea - TAS_pred); // [3 x 1] + [3 x 1] * [1 x 1]
|
|
|
|
// Update the covariance matrix
|
|
Vector3f HP2 = H_TAS * P;
|
|
P -= KG.mul_rowcol(HP2);
|
|
|
|
// force symmetry on the covariance matrix - necessary due to rounding
|
|
// errors
|
|
float P12 = 0.5f * (P.a.y + P.b.x);
|
|
float P13 = 0.5f * (P.a.z + P.c.x);
|
|
float P23 = 0.5f * (P.b.z + P.c.y);
|
|
P.a.y = P.b.x = P12;
|
|
P.a.z = P.c.x = P13;
|
|
P.b.z = P.c.y = P23;
|
|
|
|
// Constrain diagonals to be non-negative - protects against rounding errors
|
|
P.a.x = MAX(P.a.x, 0.0f);
|
|
P.b.y = MAX(P.b.y, 0.0f);
|
|
P.c.z = MAX(P.c.z, 0.0f);
|
|
|
|
state.x = constrain_float(state.x, -max_airspeed_allowed_during_cal, max_airspeed_allowed_during_cal);
|
|
state.y = constrain_float(state.y, -max_airspeed_allowed_during_cal, max_airspeed_allowed_during_cal);
|
|
state.z = constrain_float(state.z, 0.5f, 1.0f);
|
|
|
|
return state.z;
|
|
}
|
|
|
|
|
|
/*
|
|
called once a second to do calibration update
|
|
*/
|
|
void AP_Airspeed::update_calibration(uint8_t i, const Vector3f &vground, int16_t max_airspeed_allowed_during_cal)
|
|
{
|
|
if (!param[i].autocal) {
|
|
// auto-calibration not enabled
|
|
return;
|
|
}
|
|
|
|
// set state.z based on current ratio, this allows the operator to
|
|
// override the current ratio in flight with autocal, which is
|
|
// very useful both for testing and to force a reasonable value.
|
|
float ratio = constrain_float(param[i].ratio, 1.0f, 4.0f);
|
|
|
|
state[i].calibration.state.z = 1.0f / sqrtf(ratio);
|
|
|
|
// calculate true airspeed, assuming a airspeed ratio of 1.0
|
|
float dpress = MAX(get_differential_pressure(), 0);
|
|
float true_airspeed = sqrtf(dpress) * state[i].EAS2TAS;
|
|
|
|
float zratio = state[i].calibration.update(true_airspeed, vground, max_airspeed_allowed_during_cal);
|
|
|
|
if (isnan(zratio) || isinf(zratio)) {
|
|
return;
|
|
}
|
|
|
|
// this constrains the resulting ratio to between 1.0 and 4.0
|
|
zratio = constrain_float(zratio, 0.5f, 1.0f);
|
|
param[i].ratio.set(1/sq(zratio));
|
|
if (state[i].counter > 60) {
|
|
if (state[i].last_saved_ratio > 1.05f*param[i].ratio ||
|
|
state[i].last_saved_ratio < 0.95f*param[i].ratio) {
|
|
param[i].ratio.save();
|
|
state[i].last_saved_ratio = param[i].ratio;
|
|
state[i].counter = 0;
|
|
}
|
|
} else {
|
|
state[i].counter++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
called once a second to do calibration update
|
|
*/
|
|
void AP_Airspeed::update_calibration(const Vector3f &vground, int16_t max_airspeed_allowed_during_cal)
|
|
{
|
|
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
|
|
update_calibration(i, vground, max_airspeed_allowed_during_cal);
|
|
}
|
|
}
|
|
|
|
// log airspeed calibration data to MAVLink
|
|
void AP_Airspeed::log_mavlink_send(mavlink_channel_t chan, const Vector3f &vground)
|
|
{
|
|
mavlink_msg_airspeed_autocal_send(chan,
|
|
vground.x,
|
|
vground.y,
|
|
vground.z,
|
|
get_differential_pressure(primary),
|
|
state[primary].EAS2TAS,
|
|
param[primary].ratio.get(),
|
|
state[primary].calibration.state.x,
|
|
state[primary].calibration.state.y,
|
|
state[primary].calibration.state.z,
|
|
state[primary].calibration.P.a.x,
|
|
state[primary].calibration.P.b.y,
|
|
state[primary].calibration.P.c.z);
|
|
}
|