ardupilot/libraries/AP_Motors/AP_MotorsHeli.h
Randy Mackay 13a412ee21 TradHeli: make parameters and variables private
add accessors for variables and params required in main code
replace tabs with spaces
2013-11-15 22:57:41 +09:00

240 lines
12 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file AP_MotorsHeli.h
/// @brief Motor control class for Traditional Heli
#ifndef __AP_MOTORS_HELI_H__
#define __AP_MOTORS_HELI_H__
#include <inttypes.h>
#include <AP_Common.h>
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <RC_Channel.h> // RC Channel Library
#include "AP_Motors.h"
// output channels
#define AP_MOTORS_HELI_EXT_GYRO CH_7 // tail servo uses channel 7
#define AP_MOTORS_HELI_EXT_RSC CH_8 // main rotor controlled with channel 8
// maximum number of swashplate servos
#define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3
// servo output rates
#define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters
#define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos
#define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos
// servo position defaults
#define AP_MOTORS_HELI_SERVO1_POS -60
#define AP_MOTORS_HELI_SERVO2_POS 60
#define AP_MOTORS_HELI_SERVO3_POS 180
// swash type definitions
#define AP_MOTORS_HELI_SWASH_CCPM 0
#define AP_MOTORS_HELI_SWASH_H1 1
// default swash min and max angles and positions
#define AP_MOTORS_HELI_SWASH_ROLL_MAX 4500
#define AP_MOTORS_HELI_SWASH_PITCH_MAX 4500
#define AP_MOTORS_HELI_COLLECTIVE_MIN 1250
#define AP_MOTORS_HELI_COLLECTIVE_MAX 1750
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500
// swash min and max position (expressed as percentage) while in stabilize mode
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100
// default external gyro gain (ch7 out)
#define AP_MOTORS_HELI_EXT_GYRO_GAIN 1350
// main rotor speed control types (ch8 out)
#define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out) but pilot still directly controls speed with a passthrough from CH8 (in)
#define AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR 2 // main rotor ESC is connected to RC8 and controlled by arducopter
// default main rotor governor set-point (ch8 out)
#define AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT 1500
// default main rotor ramp up rate in 100th of seconds
#define AP_MOTORS_HELI_RSC_RATE 1000 // 1000 = 10 seconds
// motor run-up time default in 100th of seconds
#define AP_MOTORS_HELI_MOTOR_RUNUP_TIME 500 // 500 = 5 seconds
// flybar types
#define AP_MOTORS_HELI_NOFLYBAR 0
#define AP_MOTORS_HELI_FLYBAR 1
class AP_HeliControls;
/// @class AP_MotorsHeli
class AP_MotorsHeli : public AP_Motors {
public:
/// Constructor
AP_MotorsHeli( RC_Channel* rc_roll,
RC_Channel* rc_pitch,
RC_Channel* rc_throttle,
RC_Channel* rc_yaw,
RC_Channel* rc_8,
RC_Channel* swash_servo_1,
RC_Channel* swash_servo_2,
RC_Channel* swash_servo_3,
RC_Channel* yaw_servo,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_Motors(rc_roll, rc_pitch, rc_throttle, rc_yaw, speed_hz),
_servo_1(swash_servo_1),
_servo_2(swash_servo_2),
_servo_3(swash_servo_3),
_servo_4(yaw_servo),
_rc_8(rc_8),
_roll_scaler(1),
_pitch_scaler(1),
_collective_scalar(1),
_collective_scalar_manual(1),
_collective_out(0),
_collective_mid_pwm(0),
_rsc_output(0),
_rsc_ramp(0),
_motor_runup_timer(0)
{
AP_Param::setup_object_defaults(this, var_info);
// initialise flags
_heliflags.swash_initialised = 0;
_heliflags.manual_collective = 0;
_heliflags.landing_collective = 0;
_heliflags.motor_runup_complete = 0;
};
// init
void Init();
// set update rate to motors - a value in hertz
// you must have setup_motors before calling this
void set_update_rate( uint16_t speed_hz );
// enable - starts allowing signals to be sent to motors
void enable();
// output_min - sends minimum values out to the motors
void output_min();
// output_test - wiggle servos in order to show connections are correct
void output_test();
//
// heli specific methods
//
// allow_arming - returns true if main rotor is spinning and it is ok to arm
bool allow_arming();
// ext_gyro_enabled - returns true if we have an external gyro for yaw control
bool ext_gyro_enabled() { return _ext_gyro_enabled; }
// ext_gyro_gain - gets and sets external gyro gain output on ch7
int16_t ext_gyro_gain() { return _ext_gyro_gain; }
void ext_gyro_gain(int16_t gain) { _ext_gyro_gain = gain; }
// has_flybar - returns true if we have a mechical flybar
bool has_flybar() { return _flybar_mode; }
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
int16_t get_collective_mid() { return _collective_mid; }
// get_collective_out - returns collective position from last output as a number from 0 ~ 1000
int16_t get_collective_out() { return _collective_out; }
// set_collective_for_manual_control - limits collective to reduced range for stabilize (i.e. manual) flying
void set_collective_for_manual_control(bool true_false) { _heliflags.manual_collective = true_false; }
// get min/max collective when controlled manually as a number from 0 ~ 1000 (note that parameter is stored as percentage)
int16_t get_manual_collective_min() { return _manual_collective_min*10; }
int16_t get_manual_collective_max() { return _manual_collective_max*10; }
// set_collective_for_landing - limits collective from going too low if we know we are landed
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; }
// return true if the main rotor is up to speed
bool motor_runup_complete() { return _heliflags.motor_runup_complete; }
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// output - sends commands to the motors
void output_armed();
void output_disarmed();
private:
// heli_move_swash - moves swash plate to attitude of parameters passed in
void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
// reset_swash - free up swash for maximum movements. Used for set-up
void reset_swash();
// init_swash - initialise the swash plate
void init_swash();
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void calculate_roll_pitch_collective_factors();
// rsc_control - update value to send to main rotor's ESC
void rsc_control();
// external objects we depend upon
RC_Channel *_servo_1;
RC_Channel *_servo_2;
RC_Channel *_servo_3;
RC_Channel *_servo_4;
RC_Channel *_rc_8;
// flags bitmask
struct heliflags_type {
uint8_t swash_initialised : 1; // true if swash has been initialised
uint8_t manual_collective : 1; // true if pilot is manually controlling the collective. If true then we reduce the swash range
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum
uint8_t motor_runup_complete : 1; // true if the rotors have had enough time to wind up
} _heliflags;
// parameters
AP_Int16 _servo1_pos; // Angular location of swash servo #1
AP_Int16 _servo2_pos; // Angular location of swash servo #2
AP_Int16 _servo3_pos; // Angular location of swash servo #3
AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees
AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
AP_Int16 _ext_gyro_enabled; // Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
AP_Int16 _ext_gyro_gain; // PWM sent to the external gyro on Ch7
AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
AP_Int16 _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
AP_Int16 _ext_gov_setpoint; // PWM passed to the external motor governor when external governor is enabledv
AP_Int8 _rsc_mode; // Sets which main rotor ESC control mode is active
AP_Int16 _rsc_ramp_up_rate; // The time in 100th seconds the RSC takes to ramp up to speed
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
AP_Int8 _manual_collective_min; // Minimum collective position while pilot directly controls the collective
AP_Int8 _manual_collective_max; // Maximum collective position while pilot directly controls the collective
// internal variables
float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _roll_scaler; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range
float _pitch_scaler; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range
float _collective_scalar; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
float _collective_scalar_manual; // collective scalar to reduce the range of the collective movement while collective is being controlled manually (i.e. directly by the pilot)
int16_t _collective_out; // actual collective pitch value. Required by the main code for calculating cruise throttle
int16_t _collective_mid_pwm; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000)
int16_t _rsc_output; // final output to the external motor governor 1000-2000
int16_t _rsc_ramp; // current state of ramping
int16_t _motor_runup_timer; // timer to determine if motor has run up fully
};
#endif // AP_MOTORSHELI