ardupilot/libraries/AP_FlashIface/AP_FlashIface_JEDEC.cpp

977 lines
33 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by
* Andy Piper
* Siddharth Bharat Purohit, Cubepilot Pty. Ltd.
*/
/*
Implements Common Flash Interface Driver based on following
standard published by JEDEC
* JEDEC Standard, JESD216D, Serial Flash Discoverable Parameters (SFDP)
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_FlashIface_JEDEC.h"
#include <AP_Math/AP_Math.h>
#ifdef HAL_BOOTLOADER_BUILD
#include <AP_HAL_ChibiOS/QSPIDevice.h>
#include "../../Tools/AP_Bootloader/support.h"
#else
extern const AP_HAL::HAL& hal;
#endif
struct supported_device {
const char* name;
uint8_t manufacturer_id;
uint8_t device_id;
};
static const struct supported_device supported_devices[] = {
{"mt25q", 0x20, 0xBA}, // https://www.mouser.in/datasheet/2/671/mict_s_a0003959700_1-2290909.pdf
{"w25q", 0xEF, 0x40}
};
#ifdef HAL_BOOTLOADER_BUILD
#define DELAY_MILLIS(x) do { chThdSleepMilliseconds(x); } while(0)
#define DELAY_MICROS(x) do { chThdSleepMicroseconds(x); } while(0)
#else
#define DELAY_MILLIS(x) do { hal.scheduler->delay(x); } while(0)
#define DELAY_MICROS(x) do { hal.scheduler->delay_microseconds(x); } while(0)
#endif
#define MAX_SUPPORTED_FLASH_SIZE 0x1FFFFFFUL
// Vendor Specific Constants
// Following Commands Sets were found here:
// * JEDEC Standard JESD251-A1, Addendum No. 1 to JESD251, Optional x4 Quad I/O
// With Data Strobe
/// NOTE: Except Read ID and Multiline Read ID, they seem to be
// constant across manufacturers, but can't find official standard on
// this.
#define CMD_READ_ID 0x9F
#define CMD_MULTILINE_READ_ID 0xAF
#define CMD_PAGE_PROGRAM 0x02
#define CMD_WRITE_DISABLE 0x04
#define CMD_READ_STATUS 0x05
#define CMD_MASS_ERASE 0xC7
#define CMD_RESET_ENABLE 0x66
#define CMD_RESET_MEMORY 0x99
#define CMD_READ_SFDP 0x5A
#define SFDP_MASK(lo, hi) (((1UL<<(hi)) - ((1UL<<(lo)))) + (1UL<<(hi)))
#define SFDP_GET_BITS(x, lo, hi) (((x) & SFDP_MASK(lo, hi)) >> (lo))
#define SFDP_GET_BIT(x, bit) ((x) & (1<<(bit)))
#define SFDP_HDR_NUM_PARAMS(x) (SFDP_GET_BITS(x[1], 16, 19) + 1)
#define SFDP_HDR_PARAM_REV(x) SFDP_GET_BITS(x[1], 0, 15)
#define SFDP_PARAM_ID(x) ((SFDP_GET_BITS(x[0], 0, 3) << 8) | SFDP_GET_BITS(x[1], 24, 31))
#define SFDP_PARAM_DWORD_LEN(x) SFDP_GET_BITS(x[0], 24, 31)
#define SFDP_PARAM_POINTER(x) SFDP_GET_BITS(x[1], 0, 23)
#define SFDP_REV_1_5 0x0105
#define SFDP_REV_1_6 0x0106
// quad enable for winbond
#define QUAD_ENABLE_B1R2 0x4
//#define DEBUG
#ifdef HAL_BOOTLOADER_BUILD
#ifdef DEBUG
#define Debug(fmt, args ...) do {uprintf("JEDEC: " fmt "\n", ## args);} while(0)
#else
#define Debug(fmt, args ...)
#endif
#define Msg_Print(fmt, args ...) do {uprintf("JEDEC: " fmt "\n", ## args);} while(0)
#else
#ifdef DEBUG
#define Debug(fmt, args ...) do {hal.console->printf("JEDEC: " fmt "\n", ## args);} while(0)
#else
#define Debug(fmt, args ...)
#endif
#define Msg_Print(fmt, args ...) do {hal.console->printf("JEDEC: " fmt "\n", ## args);} while(0)
#endif // #ifdef HAL_BOOTLOADER_BUILD
#define MAX_READ_SIZE 1024UL
#ifdef HAL_BOOTLOADER_BUILD
static ChibiOS::QSPIDeviceManager qspi;
#endif
bool AP_FlashIface_JEDEC::init()
{
// Get device bus by name
_dev = nullptr;
for (uint8_t i = 0; i < ARRAY_SIZE(supported_devices); i++) {
#ifdef HAL_BOOTLOADER_BUILD
_dev = qspi.get_device(supported_devices[i].name);
#else
_dev = hal.qspi->get_device(supported_devices[i].name);
#endif
if (_dev) {
_dev_list_idx = i;
break;
}
}
if (!_dev) {
AP_HAL::panic("Ext Flash Not Found!");
}
DELAY_MILLIS(5); // required by w25q
// Reset Device involves trying to soft reset the chip
// as when system reboots the device might not have.
reset_device();
DELAY_MICROS(30); // required by w25q
// Detecting Device involves trying to read Device ID and matching
// with what we expect. Along with extracting info from SFDP
if (!detect_device()) {
Msg_Print("Failed to detect flash device: %s", supported_devices[_dev_list_idx].name);
return false;
}
// Configuring Device involved setting chip to correct WSPI mode
// i.e. 1-4-4
if (!configure_device()) {
Msg_Print("Failed to config flash device: %s", supported_devices[_dev_list_idx].name);
return false;
}
Msg_Print("Detected Flash Device: %s", supported_devices[_dev_list_idx].name);
return true;
}
//////////////////////////////////////////////////////
////////////////// Internal Methods //////////////////
//////////////////////////////////////////////////////
// reset chip to known default power on state
void AP_FlashIface_JEDEC::reset_device()
{
// Get chip out of XIP mode
AP_HAL::QSPIDevice::CommandHeader cmd;
/* Single line CMD_RESET_MEMORY command.*/
cmd.cmd = CMD_RESET_ENABLE;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
_dev->transfer(nullptr, 0, nullptr, 0);
/* Single line N25Q_CMD_RESET_MEMORY command.*/
cmd.cmd = CMD_RESET_MEMORY;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
_dev->transfer(nullptr, 0, nullptr, 0);
// By now we are pretty sure the chip is reset
}
// Does initial configuration to bring up and setup chip
bool AP_FlashIface_JEDEC::detect_device()
{
AP_HAL::QSPIDevice::CommandHeader cmd;
{
uint8_t buf[3] {};
cmd.cmd = CMD_READ_ID;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_DATA_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, buf, sizeof(buf))) {
Debug("Failed to read Device ID");
return false;
}
if (buf[0] != supported_devices[_dev_list_idx].manufacturer_id ||
buf[1] != supported_devices[_dev_list_idx].device_id) {
return false;
}
}
// Read SFDP header to get information Ref. JESD216D 4 and 6.2
{
uint32_t sfdp_header[2];
cmd.cmd = CMD_READ_SFDP;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_SIZE_24 |
AP_HAL::QSPI::CFG_DATA_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 8; // 8 dummy cycles
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, (uint8_t*)sfdp_header, sizeof(sfdp_header))) {
Debug("SFDP Header read failed");
return false;
}
// Read Signature
if (memcmp(sfdp_header, "SFDP", 4)) {
Debug("SFDP Bad Signature: 0x%lx", (unsigned long)sfdp_header[0]);
return false;
}
// Read Num Param Headers
if (SFDP_HDR_NUM_PARAMS(sfdp_header) == 0) {
Debug("Unsupported number of param headers %ld", (unsigned long)SFDP_HDR_NUM_PARAMS(sfdp_header));
return false;
}
// Read Revision
_desc.param_rev = SFDP_HDR_PARAM_REV(sfdp_header);
if (_desc.param_rev != SFDP_REV_1_6 && _desc.param_rev != SFDP_REV_1_5) {
Debug("Unsupported revision %x", (unsigned int)_desc.param_rev);
return false;
}
}
// Read Param Header Ref. JESD216D 6.4.1 6.4.2
{
uint32_t param_header[2] {}; // read only first parameter header
// Immediately after 2 DWORDS of SFDP Header
cmd.addr = 2*sizeof(uint32_t);
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, (uint8_t*)param_header, sizeof(param_header))) {
Debug("Param header read failed");
return false;
}
if (SFDP_PARAM_ID(param_header) != 0xFF) {
Debug("Only basic Param Table supported not %lx", (unsigned long)SFDP_PARAM_ID(param_header));
return false;
}
// Lets get the length of parameter table
_desc.param_table_len = MIN(SFDP_PARAM_DWORD_LEN(param_header), 20UL);
_desc.param_table_pointer = SFDP_PARAM_POINTER(param_header);
}
// Read and parse the param table
{
uint32_t param_table[20] {};
cmd.addr = _desc.param_table_pointer;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, (uint8_t*)param_table, _desc.param_table_len*sizeof(uint32_t))) {
Debug("Failed to read Parameter Table");
return false;
}
// Flash Memory details Ref. JESD216D 6.4.5 6.4.14
if (SFDP_GET_BIT(param_table[1], 31)) {
Debug("Unsupported Flash Size");
return false;
}
_desc.flash_size = SFDP_GET_BITS(param_table[1], 0, 30)/8;
// But we only support 24bit (3Bytes) addressing right now
// So limit is upto 32MB addressing
if (_desc.flash_size >= MAX_SUPPORTED_FLASH_SIZE) {
_desc.flash_size = MAX_SUPPORTED_FLASH_SIZE;
}
_desc.page_size = 1UL<<SFDP_GET_BITS(param_table[10], 4, 7);
_desc.page_count = _desc.flash_size/_desc.page_size;
if (_desc.page_count == 0) {
Debug("Page size greater than flash size unsupported");
return false;
}
// Erase Flash Memory details Ref. JESD216D 6.4.11 6.4.12
for (uint8_t i = 0; i < 4; i++) {
uint32_t size = 1UL<<SFDP_GET_BITS(param_table[7 + (i/2)], 0 + 16*(i%2), 7 + 16*(i%2));
uint8_t ins = SFDP_GET_BITS(param_table[7 + (i/2)], 8 + 16*(i%2), 15 + 16*(i%2));
if ((size-1) > 0) {
_desc.erase_type[i].size = size;
_desc.erase_type[i].ins = ins;
if (size > _desc.sector_size) {
_desc.sector_size = size;
}
if (size < _desc.min_erase_size) {
_desc.min_erase_size = size;
}
}
}
_desc.sector_count = _desc.flash_size/_desc.sector_size;
if (_desc.sector_count == 0) {
_desc.sector_count = 1;
}
// Read Erase Times 6.4.13
uint8_t timeout_mult = 2*(SFDP_GET_BITS(param_table[9], 0, 3) + 1);
for (uint8_t i = 0; i < 4; i++) {
if (_desc.erase_type[i].size) {
uint32_t unit = SFDP_GET_BITS(param_table[9], 9+(7*i), 10+(7*i));
uint8_t val = SFDP_GET_BITS(param_table[9], 4+(7*i), 8+(7*i));
if (unit == 0b00) {
unit = 1; //1ms
} else if (unit == 0b01) {
unit = 16; // 16ms
} else if (unit == 0b10) {
unit = 128; // 128ms
} else if (unit == 0b11) {
unit = 1000; // 1s
}
_desc.erase_type[i].delay_ms = (val+1)*unit;
_desc.erase_type[i].timeout_ms = timeout_mult*_desc.erase_type[i].delay_ms;
}
}
// Mass Erase times 6.4.14
uint32_t unit = SFDP_GET_BITS(param_table[10], 29, 30);
if (unit == 0b00) {
unit = 16; // 16ms
} else if (unit == 0b01) {
unit = 256; // 256ms
} else if (unit == 0b10) {
unit = 4000; // 4s
} else if (unit == 0b11) {
unit = 64000; // 64s
}
_desc.mass_erase_delay_ms = (SFDP_GET_BITS(param_table[10], 24, 28) + 1)*unit;
_desc.mass_erase_timeout_ms = timeout_mult*_desc.mass_erase_delay_ms;
// Setup Write Enable Instruction Ref. JESD216D 6.4.19
// If needed legacy support Ref. JESD216D 6.4.4 and implement that
if (SFDP_GET_BIT(param_table[15], 0) ||
SFDP_GET_BIT(param_table[15], 1)) {
_desc.write_enable_ins = 0x06;
} else if (SFDP_GET_BIT(param_table[15], 2)) {
_desc.write_enable_ins = 0x50;
} else if (SFDP_GET_BITS(param_table[15], 3, 6)) {
Debug("Unsupported Register Write Enable Config");
return false;
}
// Setup Program timings Ref. JESD216D 6.4.14
// unit = SFDP_GET_BIT(param_table[10], 23)?1:8;
// _desc.add_byte_prog_delay_us = (SFDP_GET_BITS(19, 22) + 1) * unit;
// _desc.add_byte_prog_timeout_us = _desc.add_byte_prog_delay_us * timeout_mult;
// unit = SFDP_GET_BIT(param_table[10], 18)?1:8;
// _desc.first_byte_prog_delay_us = (SFDP_GET_BITS(14, 17) + 1) * unit;
// _desc.first_byte_prog_timeout_us = _desc.first_byte_prog_delay_us * timeout_mult;
// Implement above code if more precise delay and timeouts are needed while programming
// otherwise fraction of page timings should be fine
timeout_mult = 2*(SFDP_GET_BITS(param_table[10], 0, 3) + 1);
unit = SFDP_GET_BIT(param_table[10], 13)?64:8;
_desc.page_prog_delay_us = (SFDP_GET_BITS(param_table[10], 8, 12) + 1) * unit;
_desc.page_prog_timeout_us = _desc.page_prog_delay_us * timeout_mult;
// Configure Quad Mode Enable and Read Sequence, Ref. JESD216D 6.4.8 6.4.10 6.4.18
if (!SFDP_GET_BIT(param_table[0], 21)) {
Debug("1-4-4 mode unsupported");
return false;
}
// if (!SFDP_GET_BIT(param_table[4], 4)) {
// Debug("Quad mode unsupported");
// return false;
// }
_desc.fast_read_ins = SFDP_GET_BITS(param_table[2], 8, 15);
// we get number of dummy clocks cycles needed, also include mode bits
_desc.fast_read_mode_clocks = SFDP_GET_BITS(param_table[2], 5, 7);
_desc.fast_read_dummy_cycles = SFDP_GET_BITS(param_table[2], 0, 4);
_desc.quad_mode_enable = SFDP_GET_BITS(param_table[14], 20, 22);
if (_desc.quad_mode_enable != 0b000 && _desc.quad_mode_enable != QUAD_ENABLE_B1R2) {
Debug("Unsupported Quad Enable Requirement 0x%x", _desc.quad_mode_enable);
return false;
}
if (SFDP_GET_BIT(param_table[14], 4) && _desc.quad_mode_enable != QUAD_ENABLE_B1R2) {
Debug("Unsupported Quad Enable Requirement: set QE bits");
return false;
}
// Configure XIP mode Ref. JESD216D 6.4.18
if (SFDP_GET_BIT(param_table[14], 9)) {
_desc.is_xip_supported = true;
} else {
_desc.is_xip_supported = false;
}
if (_desc.is_xip_supported) {
if (SFDP_GET_BIT(param_table[14],16)) {
_desc.entry_method = AP_FlashIface_JEDEC::XIP_ENTRY_METHOD_1;
} else if (SFDP_GET_BIT(param_table[14],17)) {
_desc.entry_method = AP_FlashIface_JEDEC::XIP_ENTRY_METHOD_2;
} else {
Debug("Unsupported XIP enable sequence 0x%x", uint8_t(SFDP_GET_BITS(param_table[14],16, 19)));
}
}
// Configure Status Polling Method Ref. JESD216D 6.4.17
if (SFDP_GET_BIT(param_table[13], 3)) {
_desc.legacy_status_polling = false;
_desc.status_read_ins = 0x70;
} else if (SFDP_GET_BIT(param_table[13], 2)) {
_desc.legacy_status_polling = true;
_desc.status_read_ins = 0x05;
}
}
initialised = true;
return true;
}
// Configures device to normal working state, currently 1-4-4 QSPI
bool AP_FlashIface_JEDEC::configure_device()
{
// Enable 1-4-4 mode
if (_desc.quad_mode_enable == QUAD_ENABLE_B1R2) {
uint8_t reg1, reg2;
if (!read_reg(0x05, reg1)) {
Debug("Failed reg1 read");
return false;
}
if (!read_reg(0x35, reg2)) {
Debug("Failed reg2 read");
return false;
}
write_enable();
wait_ready();
AP_HAL::QSPIDevice::CommandHeader cmd {
.cmd = 0x01,
.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_DATA_MODE_ONE_LINE,
.addr = 0,
.alt = 0,
.dummy = 0
};
reg2 |= 0x2; // enable QE bit
uint8_t write_val[2] { reg1, reg2 };
_dev->set_cmd_header(cmd);
if (!_dev->transfer(write_val, 2, nullptr, 0)) {
Debug("Failed QE write");
write_disable();
return false;
}
write_disable();
if (!read_reg(0x35, reg2) || (reg2 & 0x2) == 0) {
Debug("Failed to set QE bit");
return false;
}
}
Debug("Device configured for 1-4-4 mode: QE bit 0x%x, fast read ins/cycles 0x%x/0x%x",
_desc.quad_mode_enable, _desc.fast_read_ins, _desc.fast_read_dummy_cycles);
// Hurray! We are in 1-4-4 mode
_quad_spi_mode = true;
return true;
}
// Enables commands that modify flash data or settings
bool AP_FlashIface_JEDEC::write_enable()
{
if (_desc.write_enable_ins) {
wait_ready();
write_enable_called = true;
return send_cmd(_desc.write_enable_ins);
}
return true;
}
// Disables commands that modify flash data or settings
bool AP_FlashIface_JEDEC::write_disable()
{
if (_desc.write_enable_ins) {
wait_ready();
write_enable_called = true;
return send_cmd(CMD_WRITE_DISABLE);
}
return true;
}
// Read modify write register
bool AP_FlashIface_JEDEC::modify_reg(uint8_t read_ins, uint8_t write_ins,
uint8_t mask, uint8_t val)
{
// Read
uint8_t reg_val;
if (!read_reg(read_ins, reg_val)) {
return false;
}
// Modify
reg_val = (reg_val & ~mask) | (val & mask);
// Write
if (!write_reg(write_ins, reg_val)) {
return false;
}
return true;
}
// reads a register value of chip using instruction
bool AP_FlashIface_JEDEC::read_reg(uint8_t read_ins, uint8_t &read_val)
{
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = read_ins;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_DATA_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, &read_val, sizeof(read_val))) {
Debug("Failed Register Read");
return false;
}
return true;
}
// sends instruction to write a register value in the chip
bool AP_FlashIface_JEDEC::write_reg(uint8_t read_ins, uint8_t write_val)
{
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = read_ins;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_DATA_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(&write_val, 1, nullptr, 0)) {
Debug("Failed Register Write");
return false;
}
return true;
}
// Sends QSPI command without data
bool AP_FlashIface_JEDEC::send_cmd(uint8_t ins)
{
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = ins;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, nullptr, 0)) {
Debug("Failed Register Write");
return false;
}
return true;
}
//////////////////////////////////////////////////////
////////////////////PUBLIC METHODS////////////////////
//////////////////////////////////////////////////////
/**
* @details Sends command to erase the entire chips.
*
* @param[out] delay_ms Time to wait until next is_device_busy call
* @param[out] timeout_ms Time by which the erase should have timedout
*
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::start_mass_erase(uint32_t &delay_ms, uint32_t &timeout_ms)
{
write_enable();
wait_ready();
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = CMD_MASS_ERASE;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE;
cmd.addr = 0;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, nullptr, 0)) { // Command only
write_disable();
Debug("Failed to send erase command");
return false;
}
delay_ms = _desc.mass_erase_delay_ms;
timeout_ms = _desc.mass_erase_timeout_ms;
write_disable();
return true;
}
/**
* @details Sends command to erase a sector of the chip.
*
* @param[in] sector Sector number to be erased
* @param[out] delay_ms Time to wait until next is_device_busy call
* @param[out] timeout_ms Time by which the erase should have timedout
*
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::start_sector_erase(uint32_t sector, uint32_t &delay_ms, uint32_t &timeout_ms)
{
if (sector > _desc.sector_count) {
Debug("Invalid sector");
return false;
}
uint32_t erasing;
bool ret = start_erase_offset(_desc.sector_size*sector, _desc.sector_size, erasing, delay_ms, timeout_ms);
if (!ret || (erasing != _desc.sector_size)) {
Debug("Failed to erase sector");
return false;
}
return true;
}
/**
* @details Tries to erase as much as possible starting from the offset
* until size. User needs to call this as many times as needed
* taking already erased bytes into account, until desired erase
* has taken place
*
* @param[in] offset address offset for erase
* @param[in] size size desired to be erased
* @param[out] erasing number of bytes erasing
* @param[out] delay_ms Time to wait until next is_device_busy call
* @param[out] timeout_ms Time by which the erase should have timedout
*
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::start_erase_offset(uint32_t offset, uint32_t size, uint32_t &erasing,
uint32_t &delay_ms, uint32_t &timeout_ms)
{
uint8_t ins;
uint32_t erase_size = 0;
erasing = 0;
// Find the maximum size we can erase
for (uint8_t i=0; i < 4; i++) {
if (_desc.erase_type[i].size == 0) {
continue;
}
if (_desc.erase_type[i].size < erase_size) {
// we already found a larger size we can erase
continue;
}
// check if we can find an instruction to match the erase req.
if ((size >= _desc.erase_type[i].size) && !(offset % _desc.erase_type[i].size)) {
erase_size = size;
ins = _desc.erase_type[i].ins;
delay_ms = _desc.erase_type[i].delay_ms;
timeout_ms = _desc.erase_type[i].timeout_ms;
}
}
if (erase_size == 0) {
Debug("Requested Erase size is too small");
return false;
}
if ((offset+erase_size) > _desc.flash_size) {
Debug("Requested erase overflows supported flash size");
return false;
}
// Start Erasing
write_enable();
wait_ready();
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = ins;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_SIZE_24;
cmd.addr = offset;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, nullptr, 0)) { // Command only
write_disable();
Debug("Failed to send erase command");
return false;
}
write_disable();
erasing = erase_size;
return true;
}
/**
* @details Check if selected sector is erased.
*
* @param[in] sector sector for which to check erase
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::verify_sector_erase(uint32_t sector)
{
uint8_t buf[MAX_READ_SIZE] {}; // Read 1KB per read
for (uint32_t offset = _desc.sector_size*sector; offset < (_desc.sector_size*(sector+1)); offset+=sizeof(buf)) {
if (read(offset, buf, sizeof(buf))) {
for (uint16_t i = 0; i < sizeof(buf); i++) {
if (buf[i] != 0xFF) {
Debug("Found unerased byte %x @ offset %ld", (unsigned int)buf[i], (unsigned long)offset);
return false;
}
}
} else {
Debug("Read Failed");
return false;
}
}
return true;
}
/**
* @details Sends command to start programming a page of the chip.
*
* @param[in] page Page number to be written to
* @param[in] data data to be written
* @param[out] delay_us Time to wait until next is_device_busy call
* @param[out] timeout_us Time after which the erase should be timedout,
* should be reset at every call.
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::start_program_page(uint32_t page, const uint8_t* data,
uint32_t &delay_us, uint32_t &timeout_us)
{
if (page > _desc.page_count) {
Debug("Invalid Page");
return false;
}
uint32_t programming;
bool ret = start_program_offset(_desc.page_size*page, data, _desc.sector_size, programming, delay_us, timeout_us);
if (!ret || (programming != _desc.page_size)) {
Debug("Failed to program page");
return false;
}
return true;
}
/**
* @details Tries to program as much as possible starting from the offset
* until size. User needs to call this as many times as needed
* taking already programmed bytes into account.
*
* @param[in] offset address offset for program
* @param[in] data data to be programmed
* @param[in] size size desired to be programmed
* @param[out] programming number of bytes programming, taking care of the limits
* @param[out] delay_us Time to wait until program typically finishes
* @param[out] timeout_us Time by which current program should have timedout.
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::start_program_offset(uint32_t offset, const uint8_t* data, uint32_t size, uint32_t &programming,
uint32_t &delay_us, uint32_t &timeout_us)
{
if (size > _desc.page_size) {
// we can only program single
// page at the max in one go
size = _desc.page_size;
}
// Ensure we don't go beyond the page of offset, while writing
size = MIN(_desc.page_size - (offset % _desc.page_size), size);
write_enable();
wait_ready();
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = CMD_PAGE_PROGRAM;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_SIZE_24 |
AP_HAL::QSPI::CFG_DATA_MODE_ONE_LINE;
cmd.addr = offset;
cmd.alt = 0;
cmd.dummy = 0;
_dev->set_cmd_header(cmd);
if (!_dev->transfer(data, size, nullptr, 0)) { // Command only
write_disable();
Debug("Failed to send program command");
return false;
}
write_disable();
programming = size;
// we are mostly going to program in chunks so this will do
delay_us = (_desc.page_prog_delay_us*size)/(_desc.page_size);
timeout_us = (_desc.page_prog_timeout_us*size)/(_desc.page_size);
return true;
}
/**
* @details Read data from flash chip.
*
* @param[in] offset address offset from where to start the read
* @param[out] data data to be read from the device
* @param[in] size size of the data to be read
* @return The operation status.
* @retval false if the operation failed.
* @retval true if the operation succeeded.
*
*/
bool AP_FlashIface_JEDEC::read(uint32_t offset, uint8_t* data, uint32_t size)
{
if ((offset + size) > _desc.flash_size) {
// reading more than what exists
return false;
}
wait_ready();
uint32_t read_ptr, read_size;
for (read_ptr = offset; read_ptr < (offset+size); read_ptr+=MAX_READ_SIZE) {
read_size = MIN((offset+size) - read_ptr, MAX_READ_SIZE);
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = _desc.fast_read_ins;
cmd.addr = read_ptr;
cmd.alt = 0;
cmd.cfg = AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_MODE_FOUR_LINES |
AP_HAL::QSPI::CFG_ADDR_SIZE_24 |
AP_HAL::QSPI::CFG_DATA_MODE_FOUR_LINES |
AP_HAL::QSPI::CFG_ALT_SIZE_8 |
AP_HAL::QSPI::CFG_ALT_MODE_FOUR_LINES;
if (_desc.fast_read_mode_clocks == 1){
cmd.dummy = _desc.fast_read_dummy_cycles - 1;
} else {
cmd.dummy = _desc.fast_read_dummy_cycles;
}
_dev->set_cmd_header(cmd);
if (!_dev->transfer(nullptr, 0, &data[read_ptr-offset], read_size)) { // Command only
Debug("Failed to read flash");
return false;
}
}
return true;
}
/**
* @details Check if the device is busy.
*
* @return device busy with last op.
*
* @retval false if the device is ready.
* @retval true if the device is busy.
*
*/
bool AP_FlashIface_JEDEC::is_device_busy()
{
uint8_t status;
read_reg(_desc.status_read_ins, status);
if (_desc.legacy_status_polling) {
return (status & 0x1);
} else {
return !(status & 1<<7);
}
}
// wait for the chip to be ready for the next instruction
void AP_FlashIface_JEDEC::wait_ready()
{
while (is_device_busy()) {}
}
/**
* @details Starts execution in place mode
*
* @return if successfully entered XIP mode.
*
* @retval false the device failed to enter XIP mode.
* @retval true the device has entered XIP mode.
*
*/
bool AP_FlashIface_JEDEC::start_xip_mode(void** addr)
{
wait_ready();
if (!_desc.is_xip_supported) {
Debug("XIP mode unsupported on this chip");
return false;
}
switch(_desc.entry_method) {
case AP_FlashIface_JEDEC::XIP_ENTRY_METHOD_1:
{
// Set QSPI module for XIP mode
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = _desc.fast_read_ins;
cmd.alt = 0xA5;
cmd.cfg = AP_HAL::QSPI::CFG_ADDR_SIZE_24 |
AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_MODE_FOUR_LINES |
AP_HAL::QSPI::CFG_DATA_MODE_FOUR_LINES |
AP_HAL::QSPI::CFG_ALT_MODE_FOUR_LINES | /* Always 4 lines, note.*/
AP_HAL::QSPI::CFG_ALT_SIZE_8;
cmd.addr = 0;
cmd.dummy = _desc.fast_read_dummy_cycles;
_dev->set_cmd_header(cmd);
return _dev->enter_xip_mode(addr);
}
case AP_FlashIface_JEDEC::XIP_ENTRY_METHOD_2:
{
// set configuration register to start 0-4-4 mode
write_enable();
wait_ready();
if (!modify_reg(0x85, 0x81, 1<<3, 0)) {
Debug("Failed to configure chip for XIP");
write_disable();
return false;
}
// Set QSPI module for XIP mode
AP_HAL::QSPIDevice::CommandHeader cmd;
cmd.cmd = _desc.fast_read_ins;
cmd.alt = 0;
cmd.cfg = AP_HAL::QSPI::CFG_ADDR_SIZE_24 |
AP_HAL::QSPI::CFG_CMD_MODE_ONE_LINE |
AP_HAL::QSPI::CFG_ADDR_MODE_FOUR_LINES |
AP_HAL::QSPI::CFG_DATA_MODE_FOUR_LINES |
AP_HAL::QSPI::CFG_ALT_MODE_FOUR_LINES | /* Always 4 lines, note.*/
AP_HAL::QSPI::CFG_ALT_SIZE_8 |
AP_HAL::QSPI::CFG_SIOO;
cmd.addr = 0;
// correct dummy bytes because of addition of alt bytes
cmd.dummy = _desc.fast_read_dummy_cycles - 1;
_dev->set_cmd_header(cmd);
return _dev->enter_xip_mode(addr);
}
default:
{
Debug("Unsupported XIP Entry Method");
return false;
}
}
}
bool AP_FlashIface_JEDEC::stop_xip_mode()
{
return _dev->exit_xip_mode();
}