ardupilot/libraries/AP_Compass/AP_Compass_AK8963.cpp

536 lines
14 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "AP_Compass_AK8963.h"
#include <AP_InertialSensor/AP_InertialSensor_MPU9250.h>
#define READ_FLAG 0x80
#define MPUREG_I2C_SLV0_ADDR 0x25
#define MPUREG_I2C_SLV0_REG 0x26
#define MPUREG_I2C_SLV0_CTRL 0x27
#define MPUREG_EXT_SENS_DATA_00 0x49
#define MPUREG_I2C_SLV0_DO 0x63
/* bit definitions for MPUREG_USER_CTRL */
#define MPUREG_USER_CTRL 0x6A
/* Enable MPU to act as the I2C Master to external slave sensors */
# define BIT_USER_CTRL_I2C_MST_EN 0x20
# define BIT_USER_CTRL_I2C_IF_DIS 0x10
/* bit definitions for MPUREG_MST_CTRL */
#define MPUREG_I2C_MST_CTRL 0x24
# define I2C_SLV0_EN 0x80
# define I2C_MST_CLOCK_400KHZ 0x0D
# define I2C_MST_CLOCK_258KHZ 0x08
#define MPUREG_I2C_SLV4_CTRL 0x34
#define MPUREG_I2C_MST_DELAY_CTRL 0x67
# define I2C_SLV0_DLY_EN 0x01
#define AK8963_I2C_ADDR 0x0c
#define AK8963_WIA 0x00
# define AK8963_Device_ID 0x48
#define AK8963_HXL 0x03
/* bit definitions for AK8963 CNTL1 */
#define AK8963_CNTL1 0x0A
# define AK8963_CONTINUOUS_MODE1 0x02
# define AK8963_CONTINUOUS_MODE2 0x06
# define AK8963_SELFTEST_MODE 0x08
# define AK8963_POWERDOWN_MODE 0x00
# define AK8963_FUSE_MODE 0x0f
# define AK8963_16BIT_ADC 0x10
# define AK8963_14BIT_ADC 0x00
#define AK8963_CNTL2 0x0B
# define AK8963_RESET 0x01
#define AK8963_ASAX 0x10
#define AK8963_DEBUG 0
#if AK8963_DEBUG
#include <stdio.h>
#define error(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define ASSERT(x) assert(x)
#else
#define error(...) do { } while (0)
#ifndef ASSERT
#define ASSERT(x)
#endif
#endif
#define AK8963_MILLIGAUSS_SCALE 10.0f
extern const AP_HAL::HAL& hal;
AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass, AP_AK8963_SerialBus *bus) :
AP_Compass_Backend(compass),
_initialized(false),
_last_update_timestamp(0),
_last_accum_time(0),
_bus(bus)
{
_reset_filter();
}
AP_Compass_Backend *AP_Compass_AK8963::detect_mpu9250(Compass &compass, AP_HAL::SPIDeviceDriver *spi)
{
AP_AK8963_SerialBus *bus = new AP_AK8963_SerialBus_MPU9250(spi);
if (!bus)
return nullptr;
return _detect(compass, bus);
}
AP_Compass_Backend *AP_Compass_AK8963::detect_i2c(Compass &compass,
AP_HAL::I2CDriver *i2c,
uint8_t addr)
{
AP_AK8963_SerialBus *bus = new AP_AK8963_SerialBus_I2C(i2c, addr);
if (!bus)
return nullptr;
return _detect(compass, bus);
}
AP_Compass_Backend *AP_Compass_AK8963::_detect(Compass &compass,
AP_AK8963_SerialBus *bus)
{
AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, bus);
if (sensor == nullptr) {
delete bus;
return nullptr;
}
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_AK8963::~AP_Compass_AK8963()
{
delete _bus;
}
/* stub to satisfy Compass API*/
void AP_Compass_AK8963::accumulate(void)
{
}
bool AP_Compass_AK8963::init()
{
_bus_sem = _bus->get_semaphore();
hal.scheduler->suspend_timer_procs();
if (!_bus_sem->take(100)) {
hal.console->printf("AK8963: Unable to get bus semaphore");
goto fail_sem;
}
if (!_bus->configure()) {
hal.console->printf("AK8963: Could not configure bus for AK8963\n");
goto fail;
}
if (!_check_id()) {
hal.console->printf("AK8963: Wrong id\n");
goto fail;
}
if (!_calibrate()) {
hal.console->printf("AK8963: Could not read calibration data\n");
goto fail;
}
if (!_setup_mode()) {
hal.console->printf("AK8963: Could not setup mode\n");
goto fail;
}
if (!_bus->start_measurements()) {
hal.console->printf("AK8963: Could not start measurements\n");
goto fail;
}
_initialized = true;
/* register the compass instance in the frontend */
_compass_instance = register_compass();
set_dev_id(_compass_instance, _bus->get_dev_id());
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update, void));
_bus_sem->give();
hal.scheduler->resume_timer_procs();
return true;
fail:
_bus_sem->give();
fail_sem:
hal.scheduler->resume_timer_procs();
return false;
}
void AP_Compass_AK8963::read()
{
if (!_initialized) {
return;
}
if (_accum_count == 0) {
/* We're not ready to publish*/
return;
}
hal.scheduler->suspend_timer_procs();
auto field = _get_filtered_field();
_reset_filter();
hal.scheduler->resume_timer_procs();
publish_filtered_field(field, _compass_instance);
}
Vector3f AP_Compass_AK8963::_get_filtered_field() const
{
Vector3f field(_mag_x_accum, _mag_y_accum, _mag_z_accum);
field /= _accum_count;
return field;
}
void AP_Compass_AK8963::_reset_filter()
{
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
_accum_count = 0;
}
void AP_Compass_AK8963::_make_adc_sensitivity_adjustment(Vector3f& field) const
{
static const float ADC_16BIT_RESOLUTION = 0.15f;
field *= ADC_16BIT_RESOLUTION;
}
void AP_Compass_AK8963::_make_factory_sensitivity_adjustment(Vector3f& field) const
{
field.x *= _magnetometer_ASA[0];
field.y *= _magnetometer_ASA[1];
field.z *= _magnetometer_ASA[2];
}
void AP_Compass_AK8963::_update()
{
struct AP_AK8963_SerialBus::raw_value rv;
float mag_x, mag_y, mag_z;
// get raw_field - sensor frame, uncorrected
Vector3f raw_field;
uint32_t time_us = hal.scheduler->micros();
if (hal.scheduler->micros() - _last_update_timestamp < 10000) {
goto end;
}
if (!_sem_take_nonblocking()) {
goto end;
}
_bus->read_raw(&rv);
/* Check for overflow. See AK8963's datasheet, section
* 6.4.3.6 - Magnetic Sensor Overflow. */
if ((rv.st2 & 0x08)) {
goto fail;
}
mag_x = (float) rv.val[0];
mag_y = (float) rv.val[1];
mag_z = (float) rv.val[2];
if (is_zero(mag_x) && is_zero(mag_y) && is_zero(mag_z)) {
goto fail;
}
raw_field = Vector3f(mag_x, mag_y, mag_z);
_make_factory_sensitivity_adjustment(raw_field);
_make_adc_sensitivity_adjustment(raw_field);
raw_field *= AK8963_MILLIGAUSS_SCALE;
// rotate raw_field from sensor frame to body frame
rotate_field(raw_field, _compass_instance);
// publish raw_field (uncorrected point sample) for calibration use
publish_raw_field(raw_field, time_us, _compass_instance);
// correct raw_field for known errors
correct_field(raw_field, _compass_instance);
// publish raw_field (corrected point sample) for EKF use
publish_unfiltered_field(raw_field, time_us, _compass_instance);
_mag_x_accum += raw_field.x;
_mag_y_accum += raw_field.y;
_mag_z_accum += raw_field.z;
_accum_count++;
if (_accum_count == 10) {
_mag_x_accum /= 2;
_mag_y_accum /= 2;
_mag_z_accum /= 2;
_accum_count = 5;
}
_last_update_timestamp = hal.scheduler->micros();
fail:
_sem_give();
end:
return;
}
bool AP_Compass_AK8963::_check_id()
{
for (int i = 0; i < 5; i++) {
uint8_t deviceid = 0;
_bus->register_read(AK8963_WIA, &deviceid, 0x01); /* Read AK8963's id */
if (deviceid == AK8963_Device_ID) {
return true;
}
}
return false;
}
bool AP_Compass_AK8963::_setup_mode() {
_bus->register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | AK8963_16BIT_ADC);
return true;
}
bool AP_Compass_AK8963::_reset()
{
_bus->register_write(AK8963_CNTL2, AK8963_RESET);
return true;
}
bool AP_Compass_AK8963::_calibrate()
{
/* Enable FUSE-mode in order to be able to read calibration data */
_bus->register_write(AK8963_CNTL1, AK8963_FUSE_MODE | AK8963_16BIT_ADC);
uint8_t response[3];
_bus->register_read(AK8963_ASAX, response, 3);
for (int i = 0; i < 3; i++) {
float data = response[i];
_magnetometer_ASA[i] = ((data - 128) / 256 + 1);
error("%d: %lf\n", i, _magnetometer_ASA[i]);
}
return true;
}
bool AP_Compass_AK8963::_sem_take_blocking()
{
return _bus_sem->take(10);
}
bool AP_Compass_AK8963::_sem_give()
{
return _bus_sem->give();
}
bool AP_Compass_AK8963::_sem_take_nonblocking()
{
static int _sem_failure_count = 0;
if (_bus_sem->take_nonblocking()) {
_sem_failure_count = 0;
return true;
}
if (!hal.scheduler->system_initializing() ) {
_sem_failure_count++;
if (_sem_failure_count > 100) {
hal.scheduler->panic("PANIC: failed to take _bus->sem "
"100 times in a row, in "
"AP_Compass_AK8963");
}
}
return false;
}
void AP_Compass_AK8963::_dump_registers()
{
#if AK8963_DEBUG
error("MPU9250 registers\n");
static uint8_t regs[0x7e];
_bus_read(0x0, regs, 0x7e);
for (uint8_t reg=0x00; reg<=0x7E; reg++) {
uint8_t v = regs[reg];
error(("%d:%02x "), (unsigned)reg, (unsigned)v);
if (reg % 16 == 0) {
error("\n");
}
}
error("\n");
#endif
}
/* MPU9250 implementation of the AK8963 */
AP_AK8963_SerialBus_MPU9250::AP_AK8963_SerialBus_MPU9250(AP_HAL::SPIDeviceDriver *spi)
{
_spi = spi;
if (_spi == NULL) {
hal.console->printf("Cannot get SPIDevice_MPU9250\n");
return;
}
}
void AP_AK8963_SerialBus_MPU9250::register_write(uint8_t reg, uint8_t value)
{
const uint8_t count = 1;
_write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR);
_write(MPUREG_I2C_SLV0_REG, reg);
_write(MPUREG_I2C_SLV0_DO, value);
_write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count);
}
void AP_AK8963_SerialBus_MPU9250::register_read(uint8_t reg, uint8_t *value, uint8_t count)
{
_write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG);
_write(MPUREG_I2C_SLV0_REG, reg);
_write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count);
hal.scheduler->delay(10);
_read(MPUREG_EXT_SENS_DATA_00, value, count);
}
void AP_AK8963_SerialBus_MPU9250::_read(uint8_t reg, uint8_t *buf, uint32_t count)
{
ASSERT(count < 32);
reg |= READ_FLAG;
uint8_t tx[32] = { reg, };
uint8_t rx[32] = { };
_spi->transaction(tx, rx, count + 1);
memcpy(buf, rx + 1, count);
}
void AP_AK8963_SerialBus_MPU9250::_write(uint8_t reg, const uint8_t *buf, uint32_t count)
{
ASSERT(count < 2);
uint8_t tx[2] = { reg, };
memcpy(tx+1, buf, count);
_spi->transaction(tx, NULL, count + 1);
}
bool AP_AK8963_SerialBus_MPU9250::configure()
{
if (!AP_InertialSensor_MPU9250::initialize_driver_state(_spi))
return false;
uint8_t user_ctrl;
register_read(MPUREG_USER_CTRL, &user_ctrl, 1);
_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN);
_write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ);
return true;
}
void AP_AK8963_SerialBus_MPU9250::read_raw(struct raw_value *rv)
{
_read(MPUREG_EXT_SENS_DATA_00, (uint8_t *) rv, sizeof(*rv));
}
AP_HAL::Semaphore * AP_AK8963_SerialBus_MPU9250::get_semaphore()
{
return _spi->get_semaphore();
}
bool AP_AK8963_SerialBus_MPU9250::start_measurements()
{
const uint8_t count = sizeof(struct raw_value);
/* Don't sample AK8963 at MPU9250's sample rate. See MPU9250's datasheet
* about registers below and registers 73-96, External Sensor Data */
_write(MPUREG_I2C_SLV4_CTRL, 31);
_write(MPUREG_I2C_MST_DELAY_CTRL, I2C_SLV0_DLY_EN);
/* Configure the registers from AK8963 that will be read by MPU9250's
* master: we will get the result directly from MPU9250's registers starting
* from MPUREG_EXT_SENS_DATA_00 when read_raw() is called */
_write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG);
_write(MPUREG_I2C_SLV0_REG, AK8963_HXL);
_write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count);
return true;
}
uint32_t AP_AK8963_SerialBus_MPU9250::get_dev_id()
{
return AP_COMPASS_TYPE_AK8963_MPU9250;
}
/* I2C implementation of the AK8963 */
AP_AK8963_SerialBus_I2C::AP_AK8963_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) :
_i2c(i2c),
_addr(addr)
{
}
void AP_AK8963_SerialBus_I2C::register_write(uint8_t reg, uint8_t value)
{
_i2c->writeRegister(_addr, reg, value);
}
void AP_AK8963_SerialBus_I2C::register_read(uint8_t reg, uint8_t *value, uint8_t count)
{
_i2c->readRegisters(_addr, reg, count, value);
}
void AP_AK8963_SerialBus_I2C::read_raw(struct raw_value *rv)
{
_i2c->readRegisters(_addr, AK8963_HXL, sizeof(*rv), (uint8_t *) rv);
}
AP_HAL::Semaphore * AP_AK8963_SerialBus_I2C::get_semaphore()
{
return _i2c->get_semaphore();
}
uint32_t AP_AK8963_SerialBus_I2C::get_dev_id()
{
return AP_COMPASS_TYPE_AK8963_I2C;
}
#endif // CONFIG_HAL_BOARD