mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 07:28:29 -04:00
154 lines
5.0 KiB
Plaintext
154 lines
5.0 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
// Sensors are not available in HIL_MODE_ATTITUDE
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
|
|
#if CONFIG_SONAR == ENABLED
|
|
static void init_sonar(void)
|
|
{
|
|
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
|
|
sonar->calculate_scaler(g.sonar_type, 3.3f);
|
|
#else
|
|
sonar->calculate_scaler(g.sonar_type, 5.0f);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static void init_barometer(void)
|
|
{
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Calibrating barometer"));
|
|
barometer.calibrate();
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("barometer calibration complete"));
|
|
}
|
|
|
|
// return barometric altitude in centimeters
|
|
static int32_t read_barometer(void)
|
|
{
|
|
barometer.read();
|
|
return barometer.get_altitude() * 100.0f;
|
|
}
|
|
|
|
// return sonar altitude in centimeters
|
|
static int16_t read_sonar(void)
|
|
{
|
|
#if CONFIG_SONAR == ENABLED
|
|
// exit immediately if sonar is disabled
|
|
if( !g.sonar_enabled ) {
|
|
sonar_alt_health = 0;
|
|
return 0;
|
|
}
|
|
|
|
int16_t temp_alt = sonar->read();
|
|
|
|
if (temp_alt >= sonar->min_distance && temp_alt <= sonar->max_distance * 0.70f) {
|
|
if ( sonar_alt_health < SONAR_ALT_HEALTH_MAX ) {
|
|
sonar_alt_health++;
|
|
}
|
|
}else{
|
|
sonar_alt_health = 0;
|
|
}
|
|
|
|
#if SONAR_TILT_CORRECTION == 1
|
|
// correct alt for angle of the sonar
|
|
float temp = cos_pitch_x * cos_roll_x;
|
|
temp = max(temp, 0.707f);
|
|
temp_alt = (float)temp_alt * temp;
|
|
#endif
|
|
|
|
return temp_alt;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
#endif // HIL_MODE != HIL_MODE_ATTITUDE
|
|
|
|
static void init_compass()
|
|
{
|
|
if (!compass.init() || !compass.read()) {
|
|
// make sure we don't pass a broken compass to DCM
|
|
cliSerial->println_P(PSTR("COMPASS INIT ERROR"));
|
|
Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE);
|
|
return;
|
|
}
|
|
ahrs.set_compass(&compass);
|
|
#if SECONDARY_DMP_ENABLED == ENABLED
|
|
ahrs2.set_compass(&compass);
|
|
#endif
|
|
}
|
|
|
|
static void init_optflow()
|
|
{
|
|
#if OPTFLOW == ENABLED
|
|
if( optflow.init() == false ) {
|
|
g.optflow_enabled = false;
|
|
cliSerial->print_P(PSTR("\nFailed to Init OptFlow "));
|
|
Log_Write_Error(ERROR_SUBSYSTEM_OPTFLOW,ERROR_CODE_FAILED_TO_INITIALISE);
|
|
}else{
|
|
// suspend timer while we set-up SPI communication
|
|
hal.scheduler->suspend_timer_procs();
|
|
|
|
optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft
|
|
optflow.set_frame_rate(2000); // set minimum update rate (which should lead to maximum low light performance
|
|
optflow.set_resolution(OPTFLOW_RESOLUTION); // set optical flow sensor's resolution
|
|
optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view
|
|
|
|
// resume timer
|
|
hal.scheduler->resume_timer_procs();
|
|
}
|
|
#endif // OPTFLOW == ENABLED
|
|
}
|
|
|
|
// read_battery - check battery voltage and current and invoke failsafe if necessary
|
|
// called at 10hz
|
|
#define BATTERY_FS_COUNTER 100 // 100 iterations at 10hz is 10 seconds
|
|
static void read_battery(void)
|
|
{
|
|
static uint8_t low_battery_counter = 0;
|
|
|
|
if(g.battery_monitoring == BATT_MONITOR_DISABLED) {
|
|
battery_voltage1 = 0;
|
|
return;
|
|
}
|
|
|
|
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY || g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT) {
|
|
batt_volt_analog_source->set_pin(g.battery_volt_pin);
|
|
battery_voltage1 = BATTERY_VOLTAGE(batt_volt_analog_source);
|
|
}
|
|
if(g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT) {
|
|
static uint32_t last_time_ms;
|
|
uint32_t tnow = hal.scheduler->millis();
|
|
float dt_millis = tnow - last_time_ms;
|
|
current_amps1 = CURRENT_AMPS(batt_curr_analog_source);
|
|
if (last_time_ms != 0 && dt_millis < 2000) {
|
|
batt_curr_analog_source->set_pin(g.battery_curr_pin);
|
|
current_total1 += current_amps1 * 1000 * dt_millis * (1.0f/1000) * (1.0f/3600); //amps * amps to milliamps * milliseconds * milliseconds to seconds * seconds to hours
|
|
}
|
|
// update compass with current value
|
|
compass.set_current(current_amps1);
|
|
last_time_ms = tnow;
|
|
}
|
|
|
|
// check for low voltage or current if the low voltage check hasn't already been triggered
|
|
if (!ap.low_battery && ( battery_voltage1 < g.low_voltage || (g.battery_monitoring == BATT_MONITOR_VOLTAGE_AND_CURRENT && current_total1 > g.pack_capacity))) {
|
|
low_battery_counter++;
|
|
if( low_battery_counter >= BATTERY_FS_COUNTER ) {
|
|
low_battery_counter = BATTERY_FS_COUNTER; // ensure counter does not overflow
|
|
low_battery_event();
|
|
}
|
|
}else{
|
|
// reset low_battery_counter in case it was a temporary voltage dip
|
|
low_battery_counter = 0;
|
|
}
|
|
}
|
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink
|
|
// RC_CHANNELS_SCALED message
|
|
void read_receiver_rssi(void)
|
|
{
|
|
rssi_analog_source->set_pin(g.rssi_pin);
|
|
float ret = rssi_analog_source->voltage_average() * 50;
|
|
receiver_rssi = constrain_int16(ret, 0, 255);
|
|
}
|