ardupilot/APMrover2/Rover.cpp

345 lines
11 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This is the APMrover2 firmware. It was originally derived from
ArduPlane by Jean-Louis Naudin (JLN), and then rewritten after the
AP_HAL merge by Andrew Tridgell
Maintainer: Randy Mackay, Grant Morphett
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Jean-Louis Naudin, Grant Morphett
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier
APMrover alpha version tester: Franco Borasio, Daniel Chapelat...
Please contribute your ideas! See https://dev.ardupilot.org for details
*/
#include "Rover.h"
#define FORCE_VERSION_H_INCLUDE
#include "version.h"
#undef FORCE_VERSION_H_INCLUDE
#include "AP_Gripper/AP_Gripper.h"
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#define SCHED_TASK(func, _interval_ticks, _max_time_micros) SCHED_TASK_CLASS(Rover, &rover, func, _interval_ticks, _max_time_micros)
/*
scheduler table - all regular tasks are listed here, along with how
often they should be called (in Hz) and the maximum time
they are expected to take (in microseconds)
*/
const AP_Scheduler::Task Rover::scheduler_tasks[] = {
// Function name, Hz, us,
SCHED_TASK(read_radio, 50, 200),
SCHED_TASK(ahrs_update, 400, 400),
SCHED_TASK(read_rangefinders, 50, 200),
SCHED_TASK(update_current_mode, 400, 200),
SCHED_TASK(set_servos, 400, 200),
SCHED_TASK(update_GPS, 50, 300),
SCHED_TASK_CLASS(AP_Baro, &rover.barometer, update, 10, 200),
SCHED_TASK_CLASS(AP_Beacon, &rover.g2.beacon, update, 50, 200),
SCHED_TASK_CLASS(AP_Proximity, &rover.g2.proximity, update, 50, 200),
SCHED_TASK_CLASS(AP_WindVane, &rover.g2.windvane, update, 20, 100),
#if VISUAL_ODOMETRY_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_VisualOdom, &rover.g2.visual_odom, update, 50, 200),
#endif
SCHED_TASK_CLASS(AC_Fence, &rover.g2.fence, update, 10, 100),
SCHED_TASK(update_wheel_encoder, 50, 200),
SCHED_TASK(update_compass, 10, 200),
SCHED_TASK(update_mission, 50, 200),
SCHED_TASK(update_logging1, 10, 200),
SCHED_TASK(update_logging2, 10, 200),
SCHED_TASK_CLASS(GCS, (GCS*)&rover._gcs, update_receive, 400, 500),
SCHED_TASK_CLASS(GCS, (GCS*)&rover._gcs, update_send, 400, 1000),
SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&rover.g2.rc_channels, read_mode_switch, 7, 200),
SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&rover.g2.rc_channels, read_aux_all, 10, 200),
SCHED_TASK_CLASS(AP_BattMonitor, &rover.battery, read, 10, 300),
SCHED_TASK_CLASS(AP_ServoRelayEvents, &rover.ServoRelayEvents, update_events, 50, 200),
#if GRIPPER_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Gripper, &rover.g2.gripper, update, 10, 75),
#endif
SCHED_TASK(rpm_update, 10, 100),
#if MOUNT == ENABLED
SCHED_TASK_CLASS(AP_Mount, &rover.camera_mount, update, 50, 200),
#endif
#if CAMERA == ENABLED
SCHED_TASK_CLASS(AP_Camera, &rover.camera, update_trigger, 50, 200),
#endif
SCHED_TASK(gcs_failsafe_check, 10, 200),
SCHED_TASK(fence_check, 10, 200),
SCHED_TASK(ekf_check, 10, 100),
SCHED_TASK_CLASS(ModeSmartRTL, &rover.mode_smartrtl, save_position, 3, 200),
SCHED_TASK_CLASS(AP_Notify, &rover.notify, update, 50, 300),
SCHED_TASK(one_second_loop, 1, 1500),
#if HAL_SPRAYER_ENABLED
SCHED_TASK_CLASS(AC_Sprayer, &rover.g2.sprayer, update, 3, 90),
#endif
SCHED_TASK_CLASS(Compass, &rover.compass, cal_update, 50, 200),
SCHED_TASK(compass_save, 0.1, 200),
SCHED_TASK(accel_cal_update, 10, 200),
#if LOGGING_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Logger, &rover.logger, periodic_tasks, 50, 300),
#endif
SCHED_TASK_CLASS(AP_InertialSensor, &rover.ins, periodic, 400, 200),
SCHED_TASK_CLASS(AP_Scheduler, &rover.scheduler, update_logging, 0.1, 200),
SCHED_TASK_CLASS(AP_Button, &rover.button, update, 5, 200),
#if STATS_ENABLED == ENABLED
SCHED_TASK(stats_update, 1, 200),
#endif
SCHED_TASK(crash_check, 10, 200),
SCHED_TASK(cruise_learn_update, 50, 200),
#if ADVANCED_FAILSAFE == ENABLED
SCHED_TASK(afs_fs_check, 10, 200),
#endif
SCHED_TASK(read_airspeed, 10, 100),
#if OSD_ENABLED == ENABLED
SCHED_TASK(publish_osd_info, 1, 10),
#endif
};
void Rover::get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit)
{
tasks = &scheduler_tasks[0];
task_count = ARRAY_SIZE(scheduler_tasks);
log_bit = MASK_LOG_PM;
}
constexpr int8_t Rover::_failsafe_priorities[7];
Rover::Rover(void) :
AP_Vehicle(),
param_loader(var_info),
channel_steer(nullptr),
channel_throttle(nullptr),
channel_lateral(nullptr),
logger{g.log_bitmask},
modes(&g.mode1),
control_mode(&mode_initializing)
{
}
#if STATS_ENABLED == ENABLED
/*
update AP_Stats
*/
void Rover::stats_update(void)
{
g2.stats.set_flying(g2.motors.active());
g2.stats.update();
}
#endif
// update AHRS system
void Rover::ahrs_update()
{
arming.update_soft_armed();
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before AHRS update
gcs().update();
#endif
// AHRS may use movement to calculate heading
update_ahrs_flyforward();
ahrs.update();
// update position
have_position = ahrs.get_position(current_loc);
// set home from EKF if necessary and possible
if (!ahrs.home_is_set()) {
if (!set_home_to_current_location(false)) {
// ignore this failure
}
}
// if using the EKF get a speed update now (from accelerometers)
Vector3f velocity;
if (ahrs.get_velocity_NED(velocity)) {
ground_speed = norm(velocity.x, velocity.y);
} else if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
ground_speed = ahrs.groundspeed();
}
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
Log_Write_Sail();
}
if (should_log(MASK_LOG_IMU)) {
logger.Write_IMU();
}
}
/*
check for GCS failsafe - 10Hz
*/
void Rover::gcs_failsafe_check(void)
{
if (!g.fs_gcs_enabled) {
// gcs failsafe disabled
return;
}
// check for updates from GCS within 2 seconds
failsafe_trigger(FAILSAFE_EVENT_GCS, "GCS", failsafe.last_heartbeat_ms != 0 && (millis() - failsafe.last_heartbeat_ms) > 2000);
}
/*
log some key data - 10Hz
*/
void Rover::update_logging1(void)
{
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
Log_Write_Sail();
}
if (should_log(MASK_LOG_THR)) {
Log_Write_Throttle();
logger.Write_Beacon(g2.beacon);
}
if (should_log(MASK_LOG_NTUN)) {
Log_Write_Nav_Tuning();
}
if (should_log(MASK_LOG_RANGEFINDER)) {
logger.Write_Proximity(g2.proximity);
}
}
/*
log some key data - 10Hz
*/
void Rover::update_logging2(void)
{
if (should_log(MASK_LOG_STEERING)) {
Log_Write_Steering();
}
if (should_log(MASK_LOG_RC)) {
Log_Write_RC();
g2.wheel_encoder.Log_Write();
}
if (should_log(MASK_LOG_IMU)) {
logger.Write_Vibration();
}
}
/*
once a second events
*/
void Rover::one_second_loop(void)
{
// allow orientation change at runtime to aid config
ahrs.update_orientation();
set_control_channels();
// cope with changes to aux functions
SRV_Channels::enable_aux_servos();
// update notify flags
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
AP_Notify::flags.pre_arm_gps_check = true;
AP_Notify::flags.armed = arming.is_armed() || arming.arming_required() == AP_Arming::Required::NO;
AP_Notify::flags.flying = hal.util->get_soft_armed();
// cope with changes to mavlink system ID
mavlink_system.sysid = g.sysid_this_mav;
// attempt to update home position and baro calibration if not armed:
if (!hal.util->get_soft_armed()) {
update_home();
}
// need to set "likely flying" when armed to allow for compass
// learning to run
set_likely_flying(hal.util->get_soft_armed());
// send latest param values to wp_nav
g2.wp_nav.set_turn_params(g.turn_max_g, g2.turn_radius, g2.motors.have_skid_steering());
}
void Rover::update_GPS(void)
{
gps.update();
if (gps.last_message_time_ms() != last_gps_msg_ms) {
last_gps_msg_ms = gps.last_message_time_ms();
#if CAMERA == ENABLED
camera.update();
#endif
}
}
void Rover::update_current_mode(void)
{
// check for emergency stop
if (SRV_Channels::get_emergency_stop()) {
// relax controllers, motor stopping done at output level
g2.attitude_control.relax_I();
}
control_mode->update();
}
// update mission including starting or stopping commands. called by scheduler at 10Hz
void Rover::update_mission(void)
{
if (control_mode == &mode_auto) {
if (ahrs.home_is_set() && mode_auto.mission.num_commands() > 1) {
mode_auto.mission.update();
}
}
}
#if OSD_ENABLED == ENABLED
void Rover::publish_osd_info()
{
AP_OSD::NavInfo nav_info {0};
if (control_mode == &mode_loiter) {
nav_info.wp_xtrack_error = control_mode->get_distance_to_destination();
} else {
nav_info.wp_xtrack_error = control_mode->crosstrack_error();
}
nav_info.wp_distance = control_mode->get_distance_to_destination();
nav_info.wp_bearing = control_mode->wp_bearing() * 100.0f;
if (control_mode == &mode_auto) {
nav_info.wp_number = mode_auto.mission.get_current_nav_index();
}
osd.set_nav_info(nav_info);
}
#endif
Rover rover;
AP_Vehicle& vehicle = rover;
AP_HAL_MAIN_CALLBACKS(&rover);