ardupilot/libraries/AP_NavEKF/AP_NavEKF.h
2014-02-15 05:48:22 +11:00

393 lines
20 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
21 state EKF based on https://github.com/priseborough/InertialNav
Converted from Matlab to C++ by Paul Riseborough
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AP_NavEKF
#define AP_NavEKF
#include <AP_Math.h>
#include <AP_InertialSensor.h>
#include <AP_Baro.h>
#include <AP_Airspeed.h>
#include <AP_Compass.h>
// #define MATH_CHECK_INDEXES 1
#include <vectorN.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include <systemlib/perf_counter.h>
#endif
class AP_AHRS;
class NavEKF
{
public:
typedef float ftype;
#if MATH_CHECK_INDEXES
typedef VectorN<ftype,2> Vector2;
typedef VectorN<ftype,3> Vector3;
typedef VectorN<ftype,6> Vector6;
typedef VectorN<ftype,8> Vector8;
typedef VectorN<ftype,11> Vector11;
typedef VectorN<ftype,13> Vector13;
typedef VectorN<ftype,14> Vector14;
typedef VectorN<ftype,15> Vector15;
typedef VectorN<ftype,22> Vector22;
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
typedef VectorN<VectorN<ftype,22>,22> Matrix22;
typedef VectorN<VectorN<ftype,50>,22> Matrix22_50;
#else
typedef ftype Vector2[2];
typedef ftype Vector3[3];
typedef ftype Vector6[6];
typedef ftype Vector8[8];
typedef ftype Vector11[11];
typedef ftype Vector13[13];
typedef ftype Vector14[14];
typedef ftype Vector15[15];
typedef ftype Vector22[22];
typedef ftype Matrix3[3][3];
typedef ftype Matrix22[22][22];
typedef ftype Matrix22_50[22][50];
#endif
// Constructor
NavEKF(const AP_AHRS *ahrs, AP_Baro &baro);
// Initialise the filter states from the AHRS and magnetometer data (if present)
void InitialiseFilter(void);
// Initialise the attitude from accelerometer and magnetometer data (if present)
void InitialiseFilterBootstrap(void);
// Reset the position and height states to the last GPS and barometer measurement
void ResetPosition(void);
// inhibits position and velocity attitude corrections when set to true
// setting to true has same effect as ahrs.set_correct_centrifugal(false)
void SetStaticMode(bool setting);
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter(void);
// return true if the filter is healthy
bool healthy(void) const;
// return true if filter is dead-reckoning height
bool HeightDrifting(void) const;
// return true if filter is dead-reckoning position
bool PositionDrifting(void) const;
// fill in latitude, longitude and height of the reference point
void getRefLLH(struct Location &loc) const;
// set latitude, longitude and height of the reference point
void setRefLLH(int32_t lat, int32_t lng, int32_t alt_cm);
// return the last calculated NED position relative to the
// reference point (m). Return false if no position is available
bool getPosNED(Vector3f &pos) const;
// return NED velocity in m/s
void getVelNED(Vector3f &vel) const;
// return bodyaxis gyro bias estimates in deg/hr
void getGyroBias(Vector3f &gyroBias) const;
// return body axis accelerometer bias estimates in m/s^2
void getAccelBias(Vector3f &accelBias) const;
// return the NED wind speed estimates in m/s
// positive is air moving in the direction of the corresponding axis
void getWind(Vector3f &wind) const;
// return earth magnetic field estimates in measurement units
void getMagNED(Vector3f &magNED) const;
// return body magnetic field estimates in measurement units
void getMagXYZ(Vector3f &magXYZ) const;
// return the last calculated latitude, longitude and height
bool getLLH(struct Location &loc) const;
// return the Euler roll, pitch and yaw angle in radians
void getEulerAngles(Vector3f &eulers) const;
// get the transformation matrix from NED to XYD (body) axes
void getRotationNEDToBody(Matrix3f &mat) const;
// get the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED(Matrix3f &mat) const;
// get the quaternions defining the rotation from NED to XYZ (body) axes
void getQuaternion(Quaternion &quat) const;
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const;
// return the innovation variances for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getVariances(Vector3f &velVar, Vector3f &posVar, Vector3f &magVar, float &tasVar) const;
private:
const AP_AHRS *_ahrs;
AP_Baro &_baro;
void UpdateStrapdownEquationsNED();
void CovariancePrediction();
void ForceSymmetry();
void ConstrainVariances();
void ConstrainStates();
void FuseVelPosNED();
void FuseMagnetometer();
void FuseAirspeed();
void zeroRows(Matrix22 &covMat, uint8_t first, uint8_t last);
void zeroCols(Matrix22 &covMat, uint8_t first, uint8_t last);
void quatNorm(Quaternion &quatOut, const Quaternion &quatIn) const;
// store states along with system time stamp in msces
void StoreStates(void);
// recall state vector stored at closest time to the one specified by msec
void RecallStates(Vector22 &statesForFusion, uint32_t msec);
void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const;
void calcEarthRateNED(Vector3f &omega, int32_t latitude) const;
void calcvelNED(Vector3f &velNED, float gpsCourse, float gpsGndSpd, float gpsVelD) const;
void calcllh(float &lat, float &lon, float &hgt) const;
void OnGroundCheck();
void CovarianceInit(float roll, float pitch, float yaw);
void readIMUData();
void readGpsData();
void readHgtData();
void readMagData();
void readAirSpdData();
void SelectVelPosFusion();
void SelectHgtFusion();
void SelectTasFusion();
void SelectMagFusion();
void ForceYawAlignment();
void ZeroVariables();
public:
// Tuning Parameters
ftype _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s
ftype _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s
ftype _gpsHorizPosNoise; // GPS horizontal position measurement noise m
ftype _baroAltNoise; // Baro height measurement noise : m^2
ftype _gpsNEVelVarAccScale; // scale factor applied to NE velocity measurement variance due to Vdot
ftype _gpsDVelVarAccScale; // scale factor applied to D velocity measurement variance due to Vdot
ftype _gpsPosVarAccScale; // scale factor applied to position measurement variance due to Vdot
ftype _magNoise; // magnetometer measurement noise : gauss
ftype _magVarRateScale; // scale factor applied to magnetometer variance due to angular rate
ftype _easNoise; // equivalent airspeed measurement noise : m/s
ftype _windVelProcessNoise; // wind velocity state process noise : m/s^2
ftype _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate
ftype _gyrNoise; // gyro process noise : rad/s
ftype _accNoise; // accelerometer process noise : m/s^2
ftype _gyroBiasNoiseScaler; // scale factor applied to gyro bias state process variance when on ground
ftype _gyroBiasProcessNoise; // gyro bias state process noise : rad/s
ftype _accelBiasProcessNoise; // accel bias state process noise : m/s^2
ftype _magEarthProcessNoise; // earth magnetic field process noise : gauss/sec
ftype _magBodyProcessNoise; // earth magnetic field process noise : gauss/sec
uint16_t _msecVelDelay; // effective average delay of GPS velocity measurements rel to IMU (msec)
uint16_t _msecPosDelay; // effective average delay of GPS position measurements rel to (msec)
uint16_t _msecHgtDelay; // effective average delay of height measurements rel to (msec)
uint16_t _msecMagDelay; // effective average delay of magnetometer measurements rel to IMU (msec)
uint16_t _msecTasDelay; // effective average delay of airspeed measurements rel to IMU (msec)
uint16_t _msecGpsAvg; // average number of msec between GPS measurements
uint16_t _msecHgtAvg; // average number of msec between height measurements
uint8_t _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
uint8_t _gpsVelInnovGate; // Number of standard deviations applied to GPS velocity innovation consistency check
uint8_t _gpsPosInnovGate; // Number of standard deviations applied to GPS position innovation consistency check
uint8_t _hgtInnovGate; // Number of standard deviations applied to height innovation consistency check
uint8_t _magInnovGate; // Number of standard deviations applied to magnetometer innovation consistency check
uint8_t _tasInnovGate; // Number of standard deviations applied to true airspeed innovation consistency check
uint32_t _gpsRetryTimeUseTAS; // GPS retry time following innovation consistency fail if TAS measurements are used
uint32_t _gpsRetryTimeNoTAS; // GPS retry time following innovation consistency fail if no TAS measurements are used
uint32_t _hgtRetryTimeMode0; // height measurement retry time following innovation consistency fail if GPS fusion mode is = 0
uint32_t _hgtRetryTimeMode12; // height measurement retry time following innovation consistency fail if GPS fusion mode is > 0
private:
bool statesInitialised; // boolean true when filter states have been initialised
bool staticModeDemanded; // boolean true when staticMode has been demanded externally.
bool velHealth; // boolean true if velocity measurements have failed innovation consistency check
bool posHealth; // boolean true if position measurements have failed innovation consistency check
bool hgtHealth; // boolean true if height measurements have failed innovation consistency check
bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out
bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out
bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out
Vector22 states; // state matrix - 4 x quaternions, 3 x Vel, 3 x Pos, 3 x gyro bias, 3 x accel bias, 2 x wind vel, 3 x earth mag field, 3 x body mag field
Vector22 Kfusion; // Kalman gain vector
Matrix22 KH; // intermediate result used for covariance updates
Matrix22 KHP; // intermediate result used for covariance updates
Matrix22 P; // covariance matrix
Matrix22_50 storedStates; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad)
Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s)
Vector3f prevDelAng; // previous delta angle use for INS coning error compensation
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation
ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
ftype dtIMU; // time lapsed since the last IMU measurement (sec)
ftype dt; // time lapsed since the last covariance prediction (sec)
ftype hgtRate; // state for rate of change of height filter
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
const bool useAirspeed; // boolean true if airspeed data is being used
const bool useCompass; // boolean true if magnetometer data is being used
Vector6 innovVelPos; // innovation output for a group of measurements
Vector6 varInnovVelPos; // innovation variance output for a group of measurements
bool fuseVelData; // this boolean causes the velNED measurements to be fused
bool fusePosData; // this boolean causes the posNE measurements to be fused
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
Vector3f velNED; // North, East, Down velocity measurements (m/s)
Vector2 posNE; // North, East position measurements (m)
ftype hgtMea; // height measurement relative to reference point (m)
Vector22 statesAtVelTime; // States at the effective time of velNED measurements
Vector22 statesAtPosTime; // States at the effective time of posNE measurements
Vector22 statesAtHgtTime; // States at the effective time of hgtMea measurement
Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements
Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements
bool fuseMagData; // boolean true when magnetometer data is to be fused
Vector3f magData; // magnetometer flux readings in X,Y,Z body axes
Vector22 statesAtMagMeasTime; // filter states at the effective time of compass measurements
ftype innovVtas; // innovation output from fusion of airspeed measurements
ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements
bool fuseVtasData; // boolean true when airspeed data is to be fused
float VtasMeas; // true airspeed measurement (m/s)
Vector22 statesAtVtasMeasTime; // filter states at the effective measurement time
Vector3f magBias; // magnetometer bias vector in XYZ body axes
const ftype covTimeStepMax; // maximum time allowed between covariance predictions
const ftype covDelAngMax; // maximum delta angle between covariance predictions
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step
bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
const uint32_t TASmsecMax; // maximum allowed interval between TAS fusion steps
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
const bool fuseMeNow; // boolean to force fusion whenever data arrives
bool staticMode; // boolean to force position and velocity measurements to zero for pre-arm or bench testing
uint32_t lastMagUpdate; // last time compass was updated
uint8_t imuStepsVelFuse; // Number of IMU time steps from the last velocity fusion
Vector3f accelSumVelFuse; // sum of gravity corrected acceleration since last velocity fusion
Vector3f velDotNED; // rate of change of velocity in NED frame
Vector3f velDotNEDfilt; // low pass filtered velDotNED
Vector3f lastVelDotNED; // velDotNED filter state
uint32_t lastAirspeedUpdate; // last time airspeed was updated
uint32_t IMUmsec; // time that the last IMU value was taken
ftype gpsCourse; // GPS ground course angle(rad)
ftype gpsGndSpd; // GPS ground speed (m/s)
bool newDataGps; // true when new GPS data has arrived
bool newDataMag; // true when new magnetometer data has arrived
float gpsVarScaler; // scaler applied to gps measurement variance to allow for oversampling
bool newDataTas; // true when new airspeed data has arrived
bool newDataHgt; // true when new height data has arrived
uint32_t lastHgtUpdate; // time of last height measurement received (msec)
float hgtVarScaler; // scaler applied to height measurement variance to allow for oversampling
uint32_t velFailTime; // time stamp when GPS velocity measurement last failed covaraiance consistency check (msec)
uint32_t posFailTime; // time stamp when GPS position measurement last failed covaraiance consistency check (msec)
uint32_t hgtFailTime; // time stamp when height measurement last failed covaraiance consistency check (msec)
uint8_t storeIndex; // State vector storage index
uint32_t lastFixTime_ms; // time of last GPS fix used to determine if new data has arrived
Vector3f lastAngRate; // angular rate from previous IMU sample used for trapezoidal integrator
Vector3f lastAccel; // acceleration from previous IMU sample used for trapezoidal integrator
Matrix22 nextP; // Predicted covariance matrix before addition of process noise to diagonals
Vector22 processNoise; // process noise added to diagonals of predicted covariance matrix
Vector15 SF; // intermediate variables used to calculate predicted covariance matrix
Vector8 SG; // intermediate variables used to calculate predicted covariance matrix
Vector11 SQ; // intermediate variables used to calculate predicted covariance matrix
Vector8 SPP; // intermediate variables used to calculate predicted covariance matrix
// states held by magnetomter fusion across time steps
// magnetometer X,Y,Z measurements are fused across three time steps
// to level computational load as this is an expensive operation
struct {
ftype q0;
ftype q1;
ftype q2;
ftype q3;
ftype magN;
ftype magE;
ftype magD;
ftype magXbias;
ftype magYbias;
ftype magZbias;
uint8_t obsIndex;
Matrix3f DCM;
Vector3f MagPred;
ftype R_MAG;
ftype SH_MAG[9];
} mag_state;
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// performance counters
perf_counter_t _perf_UpdateFilter;
perf_counter_t _perf_CovariancePrediction;
perf_counter_t _perf_FuseVelPosNED;
perf_counter_t _perf_FuseMagnetometer;
perf_counter_t _perf_FuseAirspeed;
#endif
};
#if CONFIG_HAL_BOARD != HAL_BOARD_PX4
#define perf_begin(x)
#define perf_end(x)
#endif
#endif // AP_NavEKF