ardupilot/libraries/AP_ADSB/AP_ADSB.cpp
2015-12-18 13:49:47 +09:00

293 lines
9.2 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
AP_ADSB.cpp
ADS-B RF based collision avoidance module
https://en.wikipedia.org/wiki/Automatic_dependent_surveillance_%E2%80%93_broadcast
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_ADSB.h"
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_ADSB::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable ADSB
// @Description: Enable ADS-B
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("ENABLE", 0, AP_ADSB, _enabled, 0),
// @Param: BEHAVIOR
// @DisplayName: ADSB based Collision Avoidance Behavior
// @Description: ADSB based Collision Avoidance Behavior selector
// @Values: 0:None,1:Loiter,2:LoiterAndDescend
// @User: Advanced
AP_GROUPINFO("BEHAVIOR", 1, AP_ADSB, _behavior, ADSB_BEHAVIOR_NONE),
AP_GROUPEND
};
/*
* Initialize variables and allocate memory for array
*/
void AP_ADSB::init(void)
{
if (_vehicle_list == NULL) {
_vehicle_list = new adsb_vehicle_t[VEHICLE_LIST_LENGTH];
if (_vehicle_list == NULL) {
// dynamic RAM allocation of _vehicle_list[] failed, disable gracefully
hal.console->printf("Unable to initialize ADS-B vehicle list\n");
_enabled.set(0);
}
}
_vehicle_count = 0;
_lowest_threat_distance = 0;
_highest_threat_distance = 0;
_another_vehicle_within_radius = false;
_is_evading_threat = false;
}
/*
* de-initialize and free up some memory
*/
void AP_ADSB::deinit(void)
{
if (_vehicle_list != NULL) {
delete [] _vehicle_list;
_vehicle_list = NULL;
}
_vehicle_count = 0;
}
/*
* periodic update to handle vehicle timeouts and trigger collision detection
*/
void AP_ADSB::update(void)
{
if (!_enabled) {
if (_vehicle_list != NULL) {
deinit();
}
// nothing to do
return;
} else if (_vehicle_list == NULL) {
init();
return;
}
uint16_t index = 0;
while (index < _vehicle_count) {
// check list and drop stale vehicles. When disabled, the list will get flushed
if (AP_HAL::millis() - _vehicle_list[index].last_update_ms > VEHICLE_TIMEOUT_MS) {
// don't increment index, we want to check this same index again because the contents changed
// also, if we're disabled then clear the list
delete_vehicle(index);
} else {
index++;
}
}
perform_threat_detection();
//hal.console->printf("ADSB: cnt %u, lowT %.0f, highT %.0f\r", _vehicle_count, _lowest_threat_distance, _highest_threat_distance);
}
/*
* calculate threat vectors
*/
void AP_ADSB::perform_threat_detection(void)
{
Location my_loc;
if (_vehicle_count == 0 ||
_ahrs.get_position(my_loc) == false) {
// nothing to do or current location is unknown so we can't calculate any collisions
_another_vehicle_within_radius = false;
_lowest_threat_distance = 0; // 0 means invalid
_highest_threat_distance = 0; // 0 means invalid
return;
}
// TODO: compute lowest_threat using the 3D flight vector with respect to
// time-to-collision and probability of collision instead of furthest 2D distance
// TODO: compute highest_threat using the 3D flight vector with respect to
// time-to-collision and probability of collision instead of closest 2D distance
float min_distance = 0;
float max_distance = 0;
uint16_t min_distance_index = 0;
uint16_t max_distance_index = 0;
for (uint16_t index = 0; index < _vehicle_count; index++) {
float distance = get_distance(my_loc, get_location(_vehicle_list[index]));
if (min_distance > distance || index == 0) {
min_distance = distance;
min_distance_index = index;
}
if (max_distance < distance || index == 0) {
max_distance = distance;
max_distance_index = index;
}
if (distance <= VEHICLE_THREAT_RADIUS_M) {
_vehicle_list[index].threat_level = ADSB_THREAT_HIGH;
} else {
_vehicle_list[index].threat_level = ADSB_THREAT_LOW;
}
} // for index
_highest_threat_index = min_distance_index;
_highest_threat_distance = min_distance;
_lowest_threat_index = max_distance_index;
_lowest_threat_distance = max_distance;
// if within radius, set flag and enforce a double radius to clear flag
if (is_zero(_highest_threat_distance) || // 0 means invalid
_highest_threat_distance > 2*VEHICLE_THREAT_RADIUS_M) {
_another_vehicle_within_radius = false;
} else if (_highest_threat_distance <= VEHICLE_THREAT_RADIUS_M) {
_another_vehicle_within_radius = true;
}
}
/*
* Convert/Extract a Location from a vehicle
*/
Location AP_ADSB::get_location(const adsb_vehicle_t &vehicle) const
{
Location loc {};
loc.alt = vehicle.info.altitude * 0.1f; // convert mm to cm.
loc.lat = vehicle.info.lat;
loc.lng = vehicle.info.lon;
loc.flags.relative_alt = false;
return loc;
}
/*
* delete a vehicle by copying last vehicle to
* current index then decrementing count
*/
void AP_ADSB::delete_vehicle(uint16_t index)
{
if (index < _vehicle_count) {
// if the vehicle is the lowest/highest threat, invalidate it
if (index == _lowest_threat_index) {
_lowest_threat_distance = 0;
}
if (index == _highest_threat_index) {
_highest_threat_distance = 0;
}
if (index != _vehicle_count-1) {
_vehicle_list[index] = _vehicle_list[_vehicle_count-1];
}
// TODO: is memset needed? When we decrement the index we essentially forget about it
memset(&_vehicle_list[_vehicle_count-1], 0, sizeof(adsb_vehicle_t));
_vehicle_count--;
}
}
/*
* Search _vehicle_list for the given vehicle. A match
* depends on ICAO_address. Returns true if match found
* and index is populated. otherwise, return false.
*/
bool AP_ADSB::find_index(const adsb_vehicle_t &vehicle, uint16_t *index) const
{
for (uint16_t i = 0; i < _vehicle_count; i++) {
if (_vehicle_list[i].info.ICAO_address == vehicle.info.ICAO_address) {
*index = i;
return true;
}
}
return false;
}
/*
* Update the vehicle list. If the vehicle is already in the
* list then it will update it, otherwise it will be added.
*/
void AP_ADSB::update_vehicle(const mavlink_message_t* packet)
{
if (_vehicle_list == NULL) {
// We are only null when disabled. Updating is inhibited.
return;
}
uint16_t index;
adsb_vehicle_t vehicle {};
mavlink_msg_adsb_vehicle_decode(packet, &vehicle.info);
if (find_index(vehicle, &index)) {
// found, update it
set_vehicle(index, vehicle);
} else if (_vehicle_count < VEHICLE_LIST_LENGTH-1) {
// not found and there's room, add it to the end of the list
set_vehicle(_vehicle_count, vehicle);
_vehicle_count++;
} else {
// buffer is full, replace the vehicle with lowest threat as long as it's not further away
Location my_loc;
if (!is_zero(_lowest_threat_distance) && // nonzero means it is valid
_ahrs.get_position(my_loc)) { // true means my_loc is valid
float distance = get_distance(my_loc, get_location(vehicle));
if (distance < _lowest_threat_distance) { // is closer than the furthest
// overwrite the lowest_threat/furthest
index = _lowest_threat_index;
set_vehicle(index, vehicle);
// this is now invalid because the vehicle was overwritten, need
// to run perform_threat_detection() to determine new one because
// we aren't keeping track of the second-furthest vehicle.
_lowest_threat_distance = 0;
// is it the nearest? Then it's the highest threat. That's an easy check
// that we don't need to run perform_threat_detection() to determine
if (_highest_threat_distance > distance) {
_highest_threat_distance = distance;
_highest_threat_index = index;
}
} // if distance
} // if !zero
} // if buffer full
}
/*
* Copy a vehicle's data into the list
*/
void AP_ADSB::set_vehicle(uint16_t index, const adsb_vehicle_t &vehicle)
{
if (index < VEHICLE_LIST_LENGTH) {
_vehicle_list[index] = vehicle;
_vehicle_list[index].last_update_ms = AP_HAL::millis();
}
}