ardupilot/libraries/SITL/SIM_Vicon.cpp

266 lines
9.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simple vicon simulator class
XKFR
*/
#include "SIM_Vicon.h"
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
extern const AP_HAL::HAL& hal;
using namespace SITL;
Vicon::Vicon() :
SerialDevice::SerialDevice()
{
if (!valid_channel(mavlink_ch)) {
AP_HAL::panic("Invalid mavlink channel");
}
}
void Vicon::maybe_send_heartbeat()
{
const uint32_t now = AP_HAL::millis();
if (now - last_heartbeat_ms < 100) {
// we only provide a heartbeat every so often
return;
}
last_heartbeat_ms = now;
mavlink_message_t msg;
mavlink_msg_heartbeat_pack(system_id,
component_id,
&msg,
MAV_TYPE_GCS,
MAV_AUTOPILOT_INVALID,
0,
0,
0);
}
// get unused index in msg_buf
bool Vicon::get_free_msg_buf_index(uint8_t &index)
{
for (uint8_t i=0; i<ARRAY_SIZE(msg_buf); i++) {
if (msg_buf[i].time_send_us == 0) {
index = i;
return true;
}
}
return false;
}
void Vicon::update_vicon_position_estimate(const Location &loc,
const Vector3d &position,
const Vector3f &velocity,
const Quaternion &attitude)
{
const uint64_t now_us = AP_HAL::micros64();
// calculate a random time offset to the time sent in the message
// simulates a time difference between the remote computer and autopilot
if (time_offset_us == 0) {
time_offset_us = (unsigned(random()) % 7000) * 1000000ULL;
printf("time_offset_us %llu\n", (long long unsigned)time_offset_us);
}
// send all messages in the buffer
bool waiting_to_send = false;
for (uint8_t i=0; i<ARRAY_SIZE(msg_buf); i++) {
if ((msg_buf[i].time_send_us > 0) && (now_us >= msg_buf[i].time_send_us)) {
uint8_t buf[300];
uint16_t buf_len = mavlink_msg_to_send_buffer(buf, &msg_buf[i].obs_msg);
if (write_to_autopilot((char*)&buf, buf_len) != buf_len) {
hal.console->printf("Vicon: write failure\n");
}
msg_buf[i].time_send_us = 0;
}
waiting_to_send = msg_buf[i].time_send_us != 0;
}
if (waiting_to_send) {
// waiting for the last msg to go out
return;
}
if (now_us - last_observation_usec < 20000) {
// create observations at 20ms intervals (matches EKF max rate)
return;
}
// failure simulation
if (_sitl->vicon_fail.get() != 0) {
return;
}
float roll;
float pitch;
float yaw;
attitude.to_euler(roll, pitch, yaw);
// calculate sensor offset in earth frame
const Vector3f& pos_offset = _sitl->vicon_pos_offset.get();
Matrix3f rot;
rot.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(_sitl->state.yawDeg));
Vector3f pos_offset_ef = rot * pos_offset;
// add earth frame sensor offset and glitch to position
Vector3d pos_corrected = position + (pos_offset_ef + _sitl->vicon_glitch.get()).todouble();
// calculate a velocity offset due to the antenna position offset and body rotation rate
// note: % operator is overloaded for cross product
Vector3f gyro(radians(_sitl->state.rollRate),
radians(_sitl->state.pitchRate),
radians(_sitl->state.yawRate));
Vector3f vel_rel_offset_bf = gyro % pos_offset;
// rotate the velocity offset into earth frame and add to the c.g. velocity
Vector3f vel_rel_offset_ef = rot * vel_rel_offset_bf;
Vector3f vel_corrected = velocity + vel_rel_offset_ef + _sitl->vicon_vel_glitch.get();
// adjust yaw, position and velocity to account for vicon's yaw
const int16_t vicon_yaw_deg = _sitl->vicon_yaw.get();
if (vicon_yaw_deg != 0) {
const float vicon_yaw_rad = radians(vicon_yaw_deg);
yaw = wrap_PI(yaw - vicon_yaw_rad);
Matrix3d vicon_yaw_rot;
vicon_yaw_rot.from_euler(0, 0, -vicon_yaw_rad);
pos_corrected = vicon_yaw_rot * pos_corrected;
vel_corrected = vicon_yaw_rot.tofloat() * vel_corrected;
}
// add yaw error reported to vehicle
yaw = wrap_PI(yaw + radians(_sitl->vicon_yaw_error.get()));
// 25ms to 124ms delay before sending
uint32_t delay_ms = 25 + unsigned(random()) % 100;
uint64_t time_send_us = now_us + delay_ms * 1000UL;
// send vision position estimate message
uint8_t msg_buf_index;
if (should_send(ViconTypeMask::VISION_POSITION_ESTIMATE) && get_free_msg_buf_index(msg_buf_index)) {
mavlink_msg_vision_position_estimate_pack_chan(
system_id,
component_id,
mavlink_ch,
&msg_buf[msg_buf_index].obs_msg,
now_us + time_offset_us,
pos_corrected.x,
pos_corrected.y,
pos_corrected.z,
roll,
pitch,
yaw,
NULL, 0);
msg_buf[msg_buf_index].time_send_us = time_send_us;
}
// send older vicon position estimate message
if (should_send(ViconTypeMask::VICON_POSITION_ESTIMATE) && get_free_msg_buf_index(msg_buf_index)) {
mavlink_msg_vicon_position_estimate_pack_chan(
system_id,
component_id,
mavlink_ch,
&msg_buf[msg_buf_index].obs_msg,
now_us + time_offset_us,
pos_corrected.x,
pos_corrected.y,
pos_corrected.z,
roll,
pitch,
yaw,
NULL);
msg_buf[msg_buf_index].time_send_us = time_send_us;
}
// send vision speed estimate
if (should_send(ViconTypeMask::VISION_SPEED_ESTIMATE) && get_free_msg_buf_index(msg_buf_index)) {
mavlink_msg_vision_speed_estimate_pack_chan(
system_id,
component_id,
mavlink_ch,
&msg_buf[msg_buf_index].obs_msg,
now_us + time_offset_us,
vel_corrected.x,
vel_corrected.y,
vel_corrected.z,
NULL, 0);
msg_buf[msg_buf_index].time_send_us = time_send_us;
}
// determine time, position, and angular deltas
uint64_t time_delta = now_us - last_observation_usec;
Quaternion attitude_curr; // Rotation to current MAV_FRAME_BODY_FRD from MAV_FRAME_LOCAL_NED
attitude_curr.from_euler(roll, pitch, yaw); // Rotation to MAV_FRAME_LOCAL_NED from current MAV_FRAME_BODY_FRD
attitude_curr.invert();
Quaternion attitude_curr_prev = attitude_curr * _attitude_prev.inverse(); // Get rotation to current MAV_FRAME_BODY_FRD from previous MAV_FRAME_BODY_FRD
float angle_delta[3] = {attitude_curr_prev.get_euler_roll(),
attitude_curr_prev.get_euler_pitch(),
attitude_curr_prev.get_euler_yaw()};
Matrix3f body_ned_m;
attitude_curr.rotation_matrix(body_ned_m);
Vector3f pos_delta = body_ned_m * (pos_corrected - _position_prev).tofloat();
float postion_delta[3] = {pos_delta.x, pos_delta.y, pos_delta.z};
// send vision position delta
// time_usec: (usec) Current time stamp
// time_delta_usec: (usec) Time since last reported camera frame
// angle_delta [3]: (radians) Roll, pitch, yaw angles that define rotation to current MAV_FRAME_BODY_FRD from previous MAV_FRAME_BODY_FRD
// delta_position [3]: (meters) Change in position: To current position from previous position rotated to current MAV_FRAME_BODY_FRD from MAV_FRAME_LOCAL_NED
// confidence: Normalized confidence level [0, 100]
if (should_send(ViconTypeMask::VISION_POSITION_DELTA) && get_free_msg_buf_index(msg_buf_index)) {
mavlink_msg_vision_position_delta_pack_chan(
system_id,
component_id,
mavlink_ch,
&msg_buf[msg_buf_index].obs_msg,
now_us + time_offset_us,
time_delta,
angle_delta,
postion_delta,
0.0f);
msg_buf[msg_buf_index].time_send_us = time_send_us;
}
// set previous position & attitude
last_observation_usec = now_us;
_position_prev = pos_corrected;
_attitude_prev = attitude_curr;
}
/*
update vicon sensor state
*/
void Vicon::update(const Location &loc, const Vector3d &position, const Vector3f &velocity, const Quaternion &attitude)
{
if (!init_sitl_pointer()) {
return;
}
maybe_send_heartbeat();
update_vicon_position_estimate(loc, position, velocity, attitude);
}