mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
392 lines
8.7 KiB
C++
392 lines
8.7 KiB
C++
/*
|
|
* AP_Navigator.h
|
|
* Copyright (C) James Goppert 2010 <james.goppert@gmail.com>
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef AP_Navigator_H
|
|
#define AP_Navigator_H
|
|
|
|
#include "AP_HardwareAbstractionLayer.h"
|
|
#include "../AP_DCM/AP_DCM.h"
|
|
#include "../AP_Math/AP_Math.h"
|
|
#include "../AP_Compass/AP_Compass.h"
|
|
#include "AP_MavlinkCommand.h"
|
|
#include "constants.h"
|
|
#include "AP_Var_keys.h"
|
|
#include "../AP_RangeFinder/AP_RangeFinder.h"
|
|
#include "../AP_IMU/AP_IMU.h"
|
|
|
|
namespace apo {
|
|
|
|
/// Navigator class
|
|
class AP_Navigator {
|
|
public:
|
|
AP_Navigator(AP_HardwareAbstractionLayer * hal) :
|
|
_hal(hal), _timeStamp(0), _roll(0), _rollRate(0), _pitch(0),
|
|
_pitchRate(0), _yaw(0), _yawRate(0), _airSpeed(0),
|
|
_groundSpeed(0), _vD(0), _lat_degInt(0),
|
|
_lon_degInt(0), _alt_intM(0) {
|
|
}
|
|
virtual void calibrate() {
|
|
}
|
|
virtual void updateFast(float dt) = 0;
|
|
virtual void updateSlow(float dt) = 0;
|
|
float getPD() const {
|
|
return AP_MavlinkCommand::home.getPD(getAlt_intM());
|
|
}
|
|
|
|
float getPE() const {
|
|
return AP_MavlinkCommand::home.getPE(getLat_degInt(), getLon_degInt());
|
|
}
|
|
|
|
float getPN() const {
|
|
return AP_MavlinkCommand::home.getPN(getLat_degInt(), getLon_degInt());
|
|
}
|
|
|
|
void setPD(float _pD) {
|
|
setAlt(AP_MavlinkCommand::home.getAlt(_pD));
|
|
}
|
|
|
|
void setPE(float _pE) {
|
|
setLat(AP_MavlinkCommand::home.getLat(_pE));
|
|
}
|
|
|
|
void setPN(float _pN) {
|
|
setLon(AP_MavlinkCommand::home.getLon(_pN));
|
|
}
|
|
|
|
float getAirSpeed() const {
|
|
return _airSpeed;
|
|
}
|
|
|
|
int32_t getAlt_intM() const {
|
|
return _alt_intM;
|
|
}
|
|
|
|
float getAlt() const {
|
|
return _alt_intM / scale_m;
|
|
}
|
|
|
|
void setAlt(float _alt) {
|
|
this->_alt_intM = _alt * scale_m;
|
|
}
|
|
|
|
float getLat() const {
|
|
//Serial.print("getLatfirst");
|
|
//Serial.println(_lat_degInt * degInt2Rad);
|
|
return _lat_degInt * degInt2Rad;
|
|
}
|
|
|
|
void setLat(float _lat) {
|
|
//Serial.print("setLatfirst");
|
|
//Serial.println(_lat * rad2DegInt);
|
|
setLat_degInt(_lat*rad2DegInt);
|
|
}
|
|
|
|
float getLon() const {
|
|
return _lon_degInt * degInt2Rad;
|
|
}
|
|
|
|
void setLon(float _lon) {
|
|
this->_lon_degInt = _lon * rad2DegInt;
|
|
}
|
|
|
|
float getVD() const {
|
|
return _vD;
|
|
}
|
|
|
|
float getVE() const {
|
|
return sin(getYaw()) * getGroundSpeed();
|
|
}
|
|
|
|
float getGroundSpeed() const {
|
|
return _groundSpeed;
|
|
}
|
|
|
|
int32_t getLat_degInt() const {
|
|
//Serial.print("getLat_degInt");
|
|
//Serial.println(_lat_degInt);
|
|
return _lat_degInt;
|
|
|
|
}
|
|
|
|
int32_t getLon_degInt() const {
|
|
return _lon_degInt;
|
|
}
|
|
|
|
float getVN() const {
|
|
return cos(getYaw()) * getGroundSpeed();
|
|
}
|
|
|
|
float getPitch() const {
|
|
return _pitch;
|
|
}
|
|
|
|
float getPitchRate() const {
|
|
return _pitchRate;
|
|
}
|
|
|
|
float getRoll() const {
|
|
return _roll;
|
|
}
|
|
|
|
float getRollRate() const {
|
|
return _rollRate;
|
|
}
|
|
|
|
float getYaw() const {
|
|
return _yaw;
|
|
}
|
|
|
|
float getYawRate() const {
|
|
return _yawRate;
|
|
}
|
|
|
|
void setAirSpeed(float airSpeed) {
|
|
_airSpeed = airSpeed;
|
|
}
|
|
|
|
void setAlt_intM(int32_t alt_intM) {
|
|
_alt_intM = alt_intM;
|
|
}
|
|
|
|
void setVD(float vD) {
|
|
_vD = vD;
|
|
}
|
|
|
|
void setGroundSpeed(float groundSpeed) {
|
|
_groundSpeed = groundSpeed;
|
|
}
|
|
|
|
void setLat_degInt(int32_t lat_degInt) {
|
|
_lat_degInt = lat_degInt;
|
|
//Serial.print("setLat_degInt");
|
|
//Serial.println(_lat_degInt);
|
|
}
|
|
|
|
void setLon_degInt(int32_t lon_degInt) {
|
|
_lon_degInt = lon_degInt;
|
|
}
|
|
|
|
void setPitch(float pitch) {
|
|
_pitch = pitch;
|
|
}
|
|
|
|
void setPitchRate(float pitchRate) {
|
|
_pitchRate = pitchRate;
|
|
}
|
|
|
|
void setRoll(float roll) {
|
|
_roll = roll;
|
|
}
|
|
|
|
void setRollRate(float rollRate) {
|
|
_rollRate = rollRate;
|
|
}
|
|
|
|
void setYaw(float yaw) {
|
|
_yaw = yaw;
|
|
}
|
|
|
|
void setYawRate(float yawRate) {
|
|
_yawRate = yawRate;
|
|
}
|
|
void setTimeStamp(int32_t timeStamp) {
|
|
_timeStamp = timeStamp;
|
|
}
|
|
int32_t getTimeStamp() const {
|
|
return _timeStamp;
|
|
}
|
|
|
|
protected:
|
|
AP_HardwareAbstractionLayer * _hal;
|
|
private:
|
|
int32_t _timeStamp; // micros clock
|
|
float _roll; // rad
|
|
float _rollRate; //rad/s
|
|
float _pitch; // rad
|
|
float _pitchRate; // rad/s
|
|
float _yaw; // rad
|
|
float _yawRate; // rad/s
|
|
float _airSpeed; // m/s
|
|
float _groundSpeed; // m/s
|
|
float _vD; // m/s
|
|
int32_t _lat_degInt; // deg / 1e7
|
|
int32_t _lon_degInt; // deg / 1e7
|
|
int32_t _alt_intM; // meters / 1e3
|
|
};
|
|
|
|
class DcmNavigator: public AP_Navigator {
|
|
private:
|
|
/**
|
|
* Sensors
|
|
*/
|
|
|
|
RangeFinder * _rangeFinderDown;
|
|
AP_DCM * _dcm;
|
|
IMU * _imu;
|
|
uint16_t _imuOffsetAddress;
|
|
|
|
public:
|
|
DcmNavigator(AP_HardwareAbstractionLayer * hal) :
|
|
AP_Navigator(hal), _dcm(), _imuOffsetAddress(0) {
|
|
|
|
// if orientation equal to front, store as front
|
|
/**
|
|
* rangeFinder<direction> is assigned values based on orientation which
|
|
* is specified in ArduPilotOne.pde.
|
|
*/
|
|
for (uint8_t i = 0; i < _hal-> rangeFinders.getSize(); i++) {
|
|
if (_hal->rangeFinders[i] == NULL)
|
|
continue;
|
|
if (_hal->rangeFinders[i]->orientation_x == 0
|
|
&& _hal->rangeFinders[i]->orientation_y == 0
|
|
&& _hal->rangeFinders[i]->orientation_z == 1)
|
|
_rangeFinderDown = _hal->rangeFinders[i];
|
|
}
|
|
|
|
if (_hal->getMode() == MODE_LIVE) {
|
|
if (_hal->adc)
|
|
_hal->imu = new AP_IMU_Oilpan(_hal->adc, k_sensorCalib);
|
|
if (_hal->imu)
|
|
_dcm = new AP_DCM(_hal->imu, _hal->gps, _hal->compass);
|
|
if (_hal->compass) {
|
|
_dcm->set_compass(_hal->compass);
|
|
|
|
}
|
|
}
|
|
}
|
|
virtual void calibrate() {
|
|
|
|
AP_Navigator::calibrate();
|
|
|
|
// TODO: handle cold restart
|
|
if (_hal->imu) {
|
|
/*
|
|
* Gyro has built in warm up cycle and should
|
|
* run first */
|
|
_hal->imu->init_gyro(NULL);
|
|
_hal->imu->init_accel(NULL);
|
|
}
|
|
}
|
|
virtual void updateFast(float dt) {
|
|
if (_hal->getMode() != MODE_LIVE)
|
|
return;
|
|
|
|
setTimeStamp(micros()); // if running in live mode, record new time stamp
|
|
|
|
|
|
//_hal->debug->println_P(PSTR("nav loop"));
|
|
|
|
/**
|
|
* The altitued is read off the barometer by implementing the following formula:
|
|
* altitude (in m) = 44330*(1-(p/po)^(1/5.255)),
|
|
* where, po is pressure in Pa at sea level (101325 Pa).
|
|
* See http://www.sparkfun.com/tutorials/253 or type this formula
|
|
* in a search engine for more information.
|
|
* altInt contains the altitude in meters.
|
|
*/
|
|
if (_hal->baro) {
|
|
|
|
if (_rangeFinderDown != NULL && _rangeFinderDown->distance <= 695)
|
|
setAlt(_rangeFinderDown->distance);
|
|
|
|
else {
|
|
float tmp = (_hal->baro->Press / 101325.0);
|
|
tmp = pow(tmp, 0.190295);
|
|
//setAlt(44330 * (1.0 - tmp)); //sets the altitude in meters XXX wrong, baro reads 0 press
|
|
setAlt(0.0);
|
|
}
|
|
}
|
|
|
|
// dcm class for attitude
|
|
if (_dcm) {
|
|
_dcm->update_DCM();
|
|
setRoll(_dcm->roll);
|
|
setPitch(_dcm->pitch);
|
|
setYaw(_dcm->yaw);
|
|
setRollRate(_dcm->get_gyro().x);
|
|
setPitchRate(_dcm->get_gyro().y);
|
|
setYawRate(_dcm->get_gyro().z);
|
|
|
|
/*
|
|
* accel/gyro debug
|
|
*/
|
|
/*
|
|
Vector3f accel = _hal->imu->get_accel();
|
|
Vector3f gyro = _hal->imu->get_gyro();
|
|
Serial.printf_P(PSTR("accel: %f %f %f gyro: %f %f %f\n"),
|
|
accel.x,accel.y,accel.z,gyro.x,gyro.y,gyro.z);
|
|
*/
|
|
}
|
|
}
|
|
virtual void updateSlow(float dt) {
|
|
if (_hal->getMode() != MODE_LIVE)
|
|
return;
|
|
|
|
setTimeStamp(micros()); // if running in live mode, record new time stamp
|
|
|
|
if (_hal->gps) {
|
|
_hal->gps->update();
|
|
updateGpsLight();
|
|
if (_hal->gps->fix && _hal->gps->new_data) {
|
|
setLat_degInt(_hal->gps->latitude);
|
|
setLon_degInt(_hal->gps->longitude);
|
|
setAlt_intM(_hal->gps->altitude * 10); // gps in cm, intM in mm
|
|
setGroundSpeed(_hal->gps->ground_speed / 100.0); // gps is in cm/s
|
|
}
|
|
}
|
|
|
|
if (_hal->compass) {
|
|
_hal->compass->read();
|
|
_hal->compass->calculate(getRoll(), getPitch());
|
|
_hal->compass->null_offsets(_dcm->get_dcm_matrix());
|
|
}
|
|
}
|
|
void updateGpsLight(void) {
|
|
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
|
|
// ---------------------------------------------------------------------
|
|
static bool GPS_light = false;
|
|
switch (_hal->gps->status()) {
|
|
case (2):
|
|
//digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix.
|
|
break;
|
|
|
|
case (1):
|
|
if (_hal->gps->valid_read == true) {
|
|
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
|
|
if (GPS_light) {
|
|
digitalWrite(_hal->cLedPin, LOW);
|
|
} else {
|
|
digitalWrite(_hal->cLedPin, HIGH);
|
|
}
|
|
_hal->gps->valid_read = false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
digitalWrite(_hal->cLedPin, LOW);
|
|
break;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace apo
|
|
|
|
#endif // AP_Navigator_H
|
|
// vim:ts=4:sw=4:expandtab
|