ardupilot/APMrover2/failsafe.cpp

144 lines
4.3 KiB
C++

/*
failsafe support
Andrew Tridgell, December 2011
*/
#include "Rover.h"
/*
our failsafe strategy is to detect main loop lockup and switch to
passing inputs straight from the RC inputs to RC outputs.
*/
/*
this failsafe_check function is called from the core timer interrupt
at 1kHz.
*/
void Rover::failsafe_check()
{
static uint16_t last_ticks;
static uint32_t last_timestamp;
const uint32_t tnow = AP_HAL::micros();
const uint16_t ticks = scheduler.ticks();
if (ticks != last_ticks) {
// the main loop is running, all is OK
last_ticks = ticks;
last_timestamp = tnow;
return;
}
if (tnow - last_timestamp > 200000) {
// we have gone at least 0.2 seconds since the main loop
// ran. That means we're in trouble, or perhaps are in
// an initialisation routine or log erase. disarm the motors
// To-Do: log error to dataflash
if (arming.is_armed()) {
// disarm motors
disarm_motors();
}
}
}
/*
called to set/unset a failsafe event.
*/
void Rover::failsafe_trigger(uint8_t failsafe_type, bool on)
{
uint8_t old_bits = failsafe.bits;
if (on) {
failsafe.bits |= failsafe_type;
} else {
failsafe.bits &= ~failsafe_type;
}
if (old_bits == 0 && failsafe.bits != 0) {
// a failsafe event has started
failsafe.start_time = millis();
}
if (failsafe.triggered != 0 && failsafe.bits == 0) {
// a failsafe event has ended
gcs().send_text(MAV_SEVERITY_INFO, "Failsafe ended");
}
failsafe.triggered &= failsafe.bits;
if (failsafe.triggered == 0 &&
failsafe.bits != 0 &&
millis() - failsafe.start_time > g.fs_timeout * 1000 &&
control_mode != &mode_rtl &&
control_mode != &mode_hold) {
failsafe.triggered = failsafe.bits;
gcs().send_text(MAV_SEVERITY_WARNING, "Failsafe trigger 0x%x", static_cast<uint32_t>(failsafe.triggered));
switch (g.fs_action) {
case 0:
break;
case 1:
if (!set_mode(mode_rtl, MODE_REASON_FAILSAFE)) {
set_mode(mode_hold, MODE_REASON_FAILSAFE);
}
break;
case 2:
set_mode(mode_hold, MODE_REASON_FAILSAFE);
break;
case 3:
if (!set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) {
if (!set_mode(mode_rtl, MODE_REASON_FAILSAFE)) {
set_mode(mode_hold, MODE_REASON_FAILSAFE);
}
}
break;
case 4:
if (!set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) {
set_mode(mode_hold, MODE_REASON_FAILSAFE);
}
break;
}
}
}
void Rover::handle_battery_failsafe(const char* type_str, const int8_t action)
{
switch ((Failsafe_Action)action) {
case Failsafe_Action_None:
break;
case Failsafe_Action_SmartRTL:
if (set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) {
break;
}
FALLTHROUGH;
case Failsafe_Action_RTL:
if (set_mode(mode_rtl, MODE_REASON_FAILSAFE)) {
break;
}
FALLTHROUGH;
case Failsafe_Action_Hold:
set_mode(mode_hold, MODE_REASON_FAILSAFE);
break;
case Failsafe_Action_SmartRTL_Hold:
if (!set_mode(mode_smartrtl, MODE_REASON_FAILSAFE)) {
set_mode(mode_hold, MODE_REASON_FAILSAFE);
}
break;
case Failsafe_Action_Terminate:
#if ADVANCED_FAILSAFE == ENABLED
char battery_type_str[17];
snprintf(battery_type_str, 17, "%s battery", type_str);
g2.afs.gcs_terminate(true, battery_type_str);
#else
disarm_motors();
#endif // ADVANCED_FAILSAFE == ENABLED
break;
}
}
#if ADVANCED_FAILSAFE == ENABLED
/*
check for AFS failsafe check
*/
void Rover::afs_fs_check(void)
{
// perform AFS failsafe checks
g2.afs.check(rover.last_heartbeat_ms, rover.g2.fence.get_breaches() != 0, failsafe.last_valid_rc_ms);
}
#endif