ardupilot/APMrover2/AP_Arming.cpp

119 lines
3.9 KiB
C++

#include "AP_Arming.h"
#include "Rover.h"
// perform pre_arm_rc_checks checks
bool AP_Arming_Rover::pre_arm_rc_checks(const bool display_failure)
{
// set rc-checks to success if RC checks are disabled
if ((checks_to_perform != ARMING_CHECK_ALL) && !(checks_to_perform & ARMING_CHECK_RC)) {
return true;
}
const RC_Channel *channels[] = {
rover.channel_steer,
rover.channel_throttle,
};
const char *channel_names[] = {"Steer", "Throttle"};
for (uint8_t i= 0 ; i < ARRAY_SIZE(channels); i++) {
const RC_Channel *channel = channels[i];
const char *channel_name = channel_names[i];
// check if radio has been calibrated
if (!channel->min_max_configured()) {
if (display_failure) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: RC %s not configured", channel_name);
}
return false;
}
if (channel->get_radio_min() > 1300) {
if (display_failure) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: %s radio min too high", channel_name);
}
return false;
}
if (channel->get_radio_max() < 1700) {
if (display_failure) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: %s radio max too low", channel_name);
}
return false;
}
if (channel->get_radio_trim() < channel->get_radio_min()) {
if (display_failure) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: %s radio trim below min", channel_name);
}
return false;
}
if (channel->get_radio_trim() > channel->get_radio_max()) {
if (display_failure) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: %s radio trim above max", channel_name);
}
return false;
}
}
return true;
}
// performs pre_arm gps related checks and returns true if passed
bool AP_Arming_Rover::gps_checks(bool display_failure)
{
if (!rover.control_mode->requires_position() && !rover.control_mode->requires_velocity()) {
// we don't care!
return true;
}
// call parent gps checks
return AP_Arming::gps_checks(display_failure);
}
bool AP_Arming_Rover::pre_arm_checks(bool report)
{
return (AP_Arming::pre_arm_checks(report)
& rover.g2.motors.pre_arm_check(report)
& fence_checks(report)
& proximity_check(report));
}
bool AP_Arming_Rover::fence_checks(bool report)
{
// check fence is initialised
const char *fail_msg = nullptr;
if (!_fence.pre_arm_check(fail_msg)) {
if (report && fail_msg != nullptr) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: Fence : %s", fail_msg);
}
return false;
}
return true;
}
// check nothing is too close to vehicle
bool AP_Arming_Rover::proximity_check(bool report)
{
// return true immediately if no sensor present
if (rover.g2.proximity.get_status() == AP_Proximity::Proximity_NotConnected) {
return true;
}
// return false if proximity sensor unhealthy
if (rover.g2.proximity.get_status() < AP_Proximity::Proximity_Good) {
if (report) {
gcs().send_text(MAV_SEVERITY_CRITICAL,"PreArm: check proximity sensor");
}
return false;
}
// get closest object if we might use it for avoidance
float angle_deg, distance;
if (rover.g2.avoid.proximity_avoidance_enabled() && rover.g2.proximity.get_closest_object(angle_deg, distance)) {
// display error if something is within 60cm
if (distance <= 0.6f) {
if (report) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: Proximity %d deg, %4.2fm", static_cast<int32_t>(angle_deg), static_cast<double>(distance));
}
return false;
}
}
return true;
}