ardupilot/libraries/SITL/examples/JSON
2020-06-10 17:08:58 +10:00
..
MATLAB SITL: recompile MATLAB pnet function 2020-06-10 17:08:58 +10:00
pybullet SITL: added robot.py pybullet example code 2020-06-08 17:50:03 +10:00
readme.md SITL: JSON examples: update readme 2020-06-08 17:50:03 +10:00

The JSON SITL backend allows software to easily interface with ArduPilot using a standard JSON interface.

To launch the JSON backend run SITL with -f json:127.0.0.1 where 127.0.0.1 is replaced with the IP the physics backend is running at.

Connection to SITL is made via a UDP link on port 9002.

SITL output Data is output from SITL in a binary format:

    uint16 magic = 18458
    uint16 frame_rate
    uint32 frame_count
    uint16 pwm[16]

The magic value is a constant of 18458, this is used to confirm the packet is from ArduPilot, in the future this may also be used for protocol versioning.

The frame rate represents the time step the simulation should take, this can be changed with the SIM_RATE_HZ ArduPilot parameter. The physics backend is free to ignore this value, a maximum time step size would typically be set. The SIM_RATE_HZ should value be kept above the vehicle loop rate, by default this 400hz on copter and quadplanes and 50 hz on plane and rover.

The frame_count will increment for each output frame sent by ArduPilot, this count can be used to detect lost or duplicate frames. This count will be reset when SITL is re-started allowing the physics backend to reset the vehicle. If not input data is received after 10 seconds ArduPilot will re-send the output frame without incrementing the counter. This allows the physics model to be restarted and re-connect. Note that this may fill up the input buffer of the physics backend after some time.

PWM is a array of 16 servo values in micro seconds, typically in the 1000 to 2000 range as set by the servo output functions.

SITL input Data is received from the physics backend in a plain text JSON format. The data must contain the following fields:

    timestamp (s) physics time
    imu:
        gyro(roll, pitch, yaw) (radians/sec) body frame
        accel_body(x, y, z) (m/s^2) body frame

    position(north, east, down) (m) earth frame
    attitude(roll, pitch yaw) (radians)
    velocity(north, east, down) (m/s) earth frame

This is a example input frame, it should be preceded by and terminated with a carriage return ("\n") :

{"timestamp":2500,"imu":{"gyro":[0,0,0],"accel_body":[0,0,0]},"position":[0,0,0],"attitude":[0,0,0],"velocity":[0,0,0]}

The order of fields is not important, this is minimum required fields. In the future a support for a number of additional optional felids will be added to allow readings to be provided for additional sensors such as airspeed and lidar.