ardupilot/libraries/AP_Compass/AP_Compass_PX4.cpp
Andrew Tridgell 0fce0eb488 AP_Compass_PX4: fixed handling of a saturated compass
a saturated compass is now marked unhealthy, rather than causing the
code to spin waiting for a valid sample. This fixes a problem with
strong magnets causing the main flight loop to stop
2013-05-01 08:54:53 +10:00

138 lines
3.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* AP_Compass_PX4.cpp - Arduino Library for PX4 magnetometer
*
* This library is free software; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_Compass_PX4.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_mag.h>
#include <drivers/drv_hrt.h>
#include <stdio.h>
#include <errno.h>
extern const AP_HAL::HAL& hal;
int AP_Compass_PX4::_mag_fd = -1;
Vector3f AP_Compass_PX4::_sum;
uint32_t AP_Compass_PX4::_count = 0;
uint32_t AP_Compass_PX4::_last_timer = 0;
uint64_t AP_Compass_PX4::_last_timestamp = 0;
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Compass_PX4::init(void)
{
_mag_fd = open(MAG_DEVICE_PATH, O_RDONLY);
if (_mag_fd < 0) {
hal.console->printf("Unable to open " MAG_DEVICE_PATH);
return false;
}
/* set the mag internal poll rate to at least 150Hz */
ioctl(_mag_fd, MAGIOCSSAMPLERATE, 150);
/* set the driver to poll at 150Hz */
ioctl(_mag_fd, SENSORIOCSPOLLRATE, 150);
// average over up to 10 samples
ioctl(_mag_fd, SENSORIOCSQUEUEDEPTH, 10);
healthy = false;
_count = 0;
_sum.zero();
hal.scheduler->register_timer_process(_compass_timer);
// give the timer a chance to run, and gather one sample
hal.scheduler->delay(40);
return true;
}
bool AP_Compass_PX4::read(void)
{
hal.scheduler->suspend_timer_procs();
// try to accumulate one more sample, so we have the latest data
_accumulate();
// consider the compass healthy if we got a reading in the last 0.2s
healthy = (hrt_absolute_time() - _last_timestamp < 200000);
if (!healthy || _count == 0) {
hal.scheduler->resume_timer_procs();
return healthy;
}
_sum /= _count;
_sum *= 1000;
_sum.rotate(_orientation);
_sum.rotate(_board_orientation);
_sum += _offset.get();
// apply motor compensation
if (_motor_comp_type != AP_COMPASS_MOT_COMP_DISABLED && _thr_or_curr != 0.0f) {
_motor_offset = _motor_compensation.get() * _thr_or_curr;
_sum += _motor_offset;
} else {
_motor_offset.x = 0;
_motor_offset.y = 0;
_motor_offset.z = 0;
}
mag_x = _sum.x;
mag_y = _sum.y;
mag_z = _sum.z;
_sum.zero();
_count = 0;
hal.scheduler->resume_timer_procs();
last_update = _last_timestamp;
return true;
}
void AP_Compass_PX4::_accumulate(void)
{
struct mag_report mag_report;
while (::read(_mag_fd, &mag_report, sizeof(mag_report)) == sizeof(mag_report) &&
mag_report.timestamp != _last_timestamp) {
_sum += Vector3f(mag_report.x, mag_report.y, mag_report.z);
_count++;
_last_timestamp = mag_report.timestamp;
}
}
void AP_Compass_PX4::accumulate(void)
{
// let the timer do the work
}
void AP_Compass_PX4::_compass_timer(uint32_t now)
{
// try to accumulate samples at 100Hz
if (now - _last_timer < 10000) {
return;
}
_last_timer = hal.scheduler->micros();
_accumulate();
}
#endif // CONFIG_HAL_BOARD