ardupilot/libraries/AC_InputManager/AC_InputManager_Heli.cpp

158 lines
6.4 KiB
C++

#include "AC_InputManager_Heli.h"
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_InputManager_Heli::var_info[] = {
// parameters from parent vehicle
AP_NESTEDGROUPINFO(AC_InputManager, 0),
// Indicies 1-4 (STAB_COL_1 thru STAB_COL_4) have been replaced.
// @Param: ACRO_COL_EXP
// @DisplayName: Acro Mode Collective Expo
// @Description: Used to soften collective pitch inputs near center point in Acro mode.
// @Values: 0:Disabled,0.1:Very Low,0.2:Low,0.3:Medium,0.4:High,0.5:Very High
// @User: Advanced
AP_GROUPINFO("ACRO_COL_EXP", 5, AC_InputManager_Heli, _acro_col_expo, 0),
// @Param: STB_COL_1
// @DisplayName: Stabilize Collective Low
// @Description: Helicopter's minimum collective pitch setting at zero collective stick input in Stabilize mode. Set this as a percent of collective range given by H_COL_MAX minus H_COL_MIN.
// @Range: 0 100
// @Units: %
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STB_COL_1", 6, AC_InputManager_Heli, _heli_stab_col_min, AC_ATTITUDE_HELI_STAB_COLLECTIVE_MIN_DEFAULT),
// @Param: STB_COL_2
// @DisplayName: Stabilize Collective Mid-Low
// @Description: Helicopter's collective pitch setting at mid-low (40%) collective stick input in Stabilize mode. Set this as a percent of collective range given by H_COL_MAX minus H_COL_MIN.
// @Range: 0 100
// @Units: %
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STB_COL_2", 7, AC_InputManager_Heli, _heli_stab_col_low, AC_ATTITUDE_HELI_STAB_COLLECTIVE_LOW_DEFAULT),
// @Param: STB_COL_3
// @DisplayName: Stabilize Collective Mid-High
// @Description: Helicopter's collective pitch setting at mid-high (60%) collective stick input in Stabilize mode. Set this as a percent of collective range given by H_COL_MAX minus H_COL_MIN.
// @Range: 0 100
// @Units: %
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STB_COL_3", 8, AC_InputManager_Heli, _heli_stab_col_high, AC_ATTITUDE_HELI_STAB_COLLECTIVE_HIGH_DEFAULT),
// @Param: STB_COL_4
// @DisplayName: Stabilize Collective High
// @Description: Helicopter's maximum collective pitch setting at full collective stick input in Stabilize mode. Set this as a percent of collective range given by H_COL_MAX minus H_COL_MIN.
// @Range: 0 100
// @Units: %
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STB_COL_4", 9, AC_InputManager_Heli, _heli_stab_col_max, AC_ATTITUDE_HELI_STAB_COLLECTIVE_MAX_DEFAULT),
AP_GROUPEND
};
// get_pilot_desired_collective - rescale's pilot collective pitch input in Stabilize and Acro modes
float AC_InputManager_Heli::get_pilot_desired_collective(int16_t control_in)
{
float slope_low, slope_high, slope_range, slope_run, scalar;
float stab_col_out, acro_col_out;
// calculate stabilize collective value which scales pilot input to reduced collective range
// code implements a 3-segment curve with knee points at 40% and 60% throttle input
if (control_in < 400){ // control_in ranges from 0 to 1000
slope_low = _heli_stab_col_min / 100.0f;
slope_high = _heli_stab_col_low / 100.0f;
slope_range = 0.4f;
slope_run = control_in / 1000.0f;
} else if(control_in <600){ // control_in ranges from 0 to 1000
slope_low = _heli_stab_col_low / 100.0f;
slope_high = _heli_stab_col_high / 100.0f;
slope_range = 0.2f;
slope_run = (control_in - 400) / 1000.0f; // control_in ranges from 0 to 1000
} else {
slope_low = _heli_stab_col_high / 100.0f;
slope_high = _heli_stab_col_max / 100.0f;
slope_range = 0.4f;
slope_run = (control_in - 600) / 1000.0f; // control_in ranges from 0 to 1000
}
scalar = (slope_high - slope_low)/slope_range;
stab_col_out = slope_low + slope_run * scalar;
stab_col_out = constrain_float(stab_col_out, 0.0f, 1.0f);
//
// calculate expo-scaled acro collective
// range check expo
if (_acro_col_expo > 1.0f) {
_acro_col_expo = 1.0f;
}
if (_acro_col_expo <= 0.0f) {
acro_col_out = control_in / 1000.0f; // control_in ranges from 0 to 1000
} else {
// expo variables
float col_in, col_in3, col_out;
col_in = (float)(control_in-500)/500.0f; // control_in ranges from 0 to 1000
col_in3 = col_in*col_in*col_in;
col_out = (_acro_col_expo * col_in3) + ((1.0f-_acro_col_expo)*col_in);
acro_col_out = 0.5f + col_out*0.5f;
}
acro_col_out = constrain_float(acro_col_out, 0.0f, 1.0f);
// ramp to and from stab col over 1/2 second
if (_im_flags_heli.use_stab_col && (_stab_col_ramp < 1.0f)){
_stab_col_ramp += 2.0f/(float)_loop_rate;
} else if(!_im_flags_heli.use_stab_col && (_stab_col_ramp > 0.0f)){
_stab_col_ramp -= 2.0f/(float)_loop_rate;
}
_stab_col_ramp = constrain_float(_stab_col_ramp, 0.0f, 1.0f);
// scale collective output smoothly between acro and stab col
float collective_out;
collective_out = (float)((1.0f-_stab_col_ramp)*acro_col_out + _stab_col_ramp*stab_col_out);
collective_out = constrain_float(collective_out, 0.0f, 1.0f);
return collective_out;
}
// parameter_check - check if input manager specific parameters are sensible
bool AC_InputManager_Heli::parameter_check(char* fail_msg, uint8_t fail_msg_len) const
{
const struct StabCheck {
const char *name;
int16_t value;
} stab_checks[] = {
{"IM_STB_COL_1", _heli_stab_col_min },
{"IM_STB_COL_2", _heli_stab_col_low },
{"IM_STB_COL_3", _heli_stab_col_high },
{"IM_STB_COL_4", _heli_stab_col_max },
};
// check values are within valid range
for (uint8_t i=0; i<ARRAY_SIZE(stab_checks); i++) {
const StabCheck check = stab_checks[i];
if ((check.value < 0) || (check.value > 100)){
hal.util->snprintf(fail_msg, fail_msg_len, "%s out of range", check.name);
return false;
}
}
// check values are in correct order
for (uint8_t i=1; i<ARRAY_SIZE(stab_checks); i++) {
if ((stab_checks[i-1].value >= stab_checks[i].value)){
hal.util->snprintf(fail_msg, fail_msg_len, "%s must be < %s", stab_checks[i-1].name, stab_checks[i].name);
return false;
}
}
// all other cases parameters are OK
return true;
}