ardupilot/libraries/AP_HAL_Linux/Poller.cpp
Leandro Pereira 0f865a019a AP_HAL_Linux: Add Pollable/Poller
Add system's polling infrastructure to be notified whenever a
file descriptor is ready to be read from or written to.

Adds a few classes:
  * Poller, as an interface to epoll()
  * Pollable, as an interface to a file descriptor
2016-07-30 00:55:27 -03:00

335 lines
8.7 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* Copyright (C) 2016 Intel Corporation. All rights reserved.
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cstddef>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdint.h>
#include <sys/epoll.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include "Poller.h"
#include "Scheduler.h"
extern const AP_HAL::HAL& hal;
namespace Linux {
uint32_t Poller::to_epoll_events(Poller::Event ev) {
// EPOLLWAKEUP prevents the system from hibernating or suspending when
// inside epoll_wait() for this particular event. It is silently
// ignored if the process does not have the CAP_BLOCK_SUSPEND
// capability.
uint32_t op = EPOLLWAKEUP;
if (ev & Poller::Event::Read) {
op |= EPOLLIN;
}
if (ev & Poller::Event::Write) {
op |= EPOLLOUT;
}
if (ev & Poller::Event::Error) {
op |= EPOLLERR;
}
return op;
}
bool Poller::register_pollable(Pollable *p, const Poller::Event ev) {
if (_epfd < 0) {
return false;
}
struct epoll_event epev = {0};
epev.events = Poller::to_epoll_events(ev);
epev.data.ptr = static_cast<void *>(p);
return epoll_ctl(_epfd, EPOLL_CTL_ADD, p->get_fd(), &epev) == 0;
}
void Poller::unregister_pollable(const Pollable *p) {
if (_epfd >= 0) {
epoll_ctl(_epfd, EPOLL_CTL_DEL, p->get_fd(), NULL);
}
}
int Poller::poll(int timeout_ms) const {
const int max_events = 16;
epoll_event events[max_events];
const auto before_wait_us = AP_HAL::micros64();
const auto r = epoll_wait(_epfd, events, max_events, timeout_ms);
const auto delta_us = AP_HAL::micros64() - before_wait_us;
const auto delta_ms = delta_us / 1000;
const auto remaining_time_ms = timeout_ms - delta_ms;
if (r > 0) {
auto max_time_ms = remaining_time_ms / r;
if (!max_time_ms) {
max_time_ms = 1;
}
for (int i = 0; i < r; i++) {
Pollable *p = static_cast<Pollable *>(events[i].data.ptr);
if (events[i].events & EPOLLIN) {
p->on_can_read(max_time_ms);
}
if (events[i].events & EPOLLOUT) {
p->on_can_write(max_time_ms);
}
if (events[i].events & EPOLLERR) {
p->on_error(max_time_ms);
}
if (events[i].events & EPOLLHUP) {
p->on_hang_up(max_time_ms);
}
}
} else if (r < 0) {
if (errno == EINTR) {
// Try polling again with the remaining wait time.
return poll(remaining_time_ms);
}
}
return r;
}
Pollable::~Pollable() {
close(_fd);
}
bool Pollable::set_blocking(bool setting) {
auto curflags = fcntl(_fd, F_GETFL, 0);
if (curflags < 0) {
return false;
}
if (setting) {
curflags &= ~O_NONBLOCK;
} else {
curflags |= O_NONBLOCK;
}
return fcntl(_fd, F_SETFL, curflags) == 0;
}
void BufferedPollable::on_can_read(int max_time_ms) {
if (!_read_sem.take(max_time_ms)) {
return;
}
ByteBuffer::IoVec vec[2];
const auto n_vec = _read_buffer.reserve(vec, _read_buffer.space());
if (n_vec) {
struct iovec iovec[n_vec];
for (int i = 0; i < n_vec; i++) {
iovec[i].iov_base = static_cast<void *>(vec[i].data);
iovec[i].iov_len = static_cast<size_t>(vec[i].len);
}
(void) readv(_fd, iovec, n_vec);
}
_read_sem.give();
}
void BufferedPollable::on_hang_up(int max_time_ms) {
auto half_time_ms = max_time_ms / 2;
if (!_read_sem.take(half_time_ms)) {
return;
}
if (_write_sem.take(half_time_ms)) {
_read_buffer.advance(_read_buffer.available());
_write_buffer.advance(_write_buffer.available());
close(_fd);
_fd = -1;
_write_sem.give();
}
_read_sem.give();
}
void BufferedPollable::write_fd(uint32_t n_bytes) {
// NOTE: Must be called with _write_sem taken.
if (!n_bytes) {
return;
}
ByteBuffer::IoVec vec[2];
auto n_vec = _write_buffer.peekiovec(vec, n_bytes);
if (!n_vec) {
return;
}
struct iovec iovec[n_vec];
for (int i = 0; i < n_vec; i++) {
iovec[i].iov_base = static_cast<void *>(vec[i].data);
iovec[i].iov_len = static_cast<size_t>(vec[i].len);
}
auto written = writev(_fd, iovec, n_vec);
if (written > 0) {
_write_buffer.advance(static_cast<uint32_t>(written));
}
}
void BufferedPollable::on_can_write(int max_time_ms) {
if (_write_sem.take(max_time_ms)) {
write_fd(_write_buffer.available());
_write_sem.give();
}
}
bool BufferedPollable::is_write_buffer_empty() {
bool ret = false;
if (_write_sem.take_nonblocking()) {
ret = _write_buffer.available() > 0;
_write_sem.give();
}
return ret;
}
uint32_t BufferedPollable::get_read_buffer_available() {
uint32_t ret = 0;
if (_read_sem.take_nonblocking()) {
ret = _read_buffer.available();
_read_sem.give();
}
return ret;
}
uint32_t BufferedPollable::get_write_buffer_available() {
uint32_t ret = 0;
if (_write_sem.take_nonblocking()) {
ret = _write_buffer.available();
_write_sem.give();
}
return ret;
}
uint32_t BufferedPollable::buffered_read(uint8_t *ptr, uint32_t len) {
uint32_t ret = 0;
bool taken_sem;
if (_blocking_reads) {
taken_sem = _read_sem.take(100);
} else {
taken_sem = _read_sem.take_nonblocking();
}
if (taken_sem) {
ret = _read_buffer.read(ptr, len);
_read_sem.give();
}
return ret;
}
uint32_t BufferedPollable::buffered_write(const uint8_t *buf, uint32_t len) {
uint32_t ret = 0;
bool taken_sem;
if (_blocking_writes) {
taken_sem = _write_sem.take(100);
} else {
taken_sem = _write_sem.take_nonblocking();
}
if (taken_sem) {
if (_write_buffer.space() >= len) {
ret = _write_buffer.write(buf, len);
}
_write_sem.give();
}
return ret;
}
uint32_t PacketedBufferedPollable::to_mavlink_boundary(uint32_t available) {
// NOTE: Must be called with _write_sem taken.
const uint32_t mavlink_hdr_size = 8; // 6-byte header + 2-byte cksum.
const uint32_t mavlink_max_size = 256;
const uint8_t mavlink_marker = 254;
if (!available) {
return 0;
}
if (_write_buffer.peek(0) != mavlink_marker) {
// Non-mavlink packet at the start of the buffer. Look ahead for a
// MAVLink start byte, up to 256 bytes ahead.
const auto limit = std::min(mavlink_max_size, available);
uint32_t contiguous_avail;
const uint8_t *ptr = _write_buffer.readptr(contiguous_avail);
if (contiguous_avail >= limit) {
// If there's enough contiguous data in the ring buffer, use a
// fast byte scan instead. This should happen more often.
auto marker_pos = memchr(ptr, mavlink_marker, limit);
if (marker_pos) {
return static_cast<uint32_t>(
static_cast<const uint8_t *>(marker_pos) - ptr);
}
} else {
for (uint32_t i = 0; i < limit; i++) {
if (_write_buffer.peek(i) == mavlink_marker) {
return i;
}
}
}
// No MAVLink marker, limit the send size to mavlink_max_size.
return limit;
}
if (available < mavlink_hdr_size) {
return 0; // Not a full MAVLink packet yet.
}
// Possible MAVLink packet, just check if it is complete.
const auto pktlen = _write_buffer.peek(1); // Length is on 2nd byte.
if (pktlen == -1 || available < static_cast<uint8_t>(pktlen) + mavlink_hdr_size) {
return 0; // Not a full MAVLink packet yet.
}
// Packet seems complete. Send one at a time.
return pktlen + mavlink_hdr_size;
}
void PacketedBufferedPollable::on_can_write(int max_time_ms) {
if (_write_sem.take(max_time_ms)) {
write_fd(to_mavlink_boundary(_write_buffer.available()));
_write_sem.give();
}
}
}