ardupilot/libraries/AP_HAL_ChibiOS/RCOutput.cpp
Andrew Tridgell 744a2fe535 HAL_ChibiOS: use uint32_t for bit timing in passthru
we should not use systime_t as it may be 16 bit
2021-03-23 12:01:20 +11:00

2190 lines
65 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
* Bi-directional dshot based on Betaflight, code by Andy Piper and Siddharth Bharat Purohit
*/
#include "RCOutput.h"
#include <AP_Math/AP_Math.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_HAL/utility/RingBuffer.h>
#include "GPIO.h"
#include "hwdef/common/stm32_util.h"
#include "hwdef/common/watchdog.h"
#include <AP_InternalError/AP_InternalError.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
#if HAL_USE_PWM == TRUE
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
#if HAL_WITH_IO_MCU
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
#define RCOU_SERIAL_TIMING_DEBUG 0
#if RCOU_DSHOT_TIMING_DEBUG
#define TOGGLE_PIN_DEBUG(pin) do { palToggleLine(HAL_GPIO_LINE_GPIO ## pin); } while (0)
#else
#define TOGGLE_PIN_DEBUG(pin) do {} while (0)
#endif
#define TELEM_IC_SAMPLE 16
struct RCOutput::pwm_group RCOutput::pwm_group_list[] = { HAL_PWM_GROUPS };
struct RCOutput::irq_state RCOutput::irq;
const uint8_t RCOutput::NUM_GROUPS = ARRAY_SIZE(RCOutput::pwm_group_list);
// event mask for triggering a PWM send
static const eventmask_t EVT_PWM_SEND = EVENT_MASK(11);
// marker for a disabled channel
#define CHAN_DISABLED 255
// #pragma GCC optimize("Og")
/*
initialise RC output driver
*/
void RCOutput::init()
{
uint8_t pwm_count = AP_BoardConfig::get_pwm_count();
for (auto &group : pwm_group_list) {
const uint8_t i = &group - pwm_group_list;
//Start Pwm groups
group.current_mode = MODE_PWM_NORMAL;
group.dshot_event_mask = EVENT_MASK(i);
for (uint8_t j = 0; j < 4; j++ ) {
uint8_t chan = group.chan[j];
if (chan >= pwm_count) {
group.chan[j] = CHAN_DISABLED;
}
if (group.chan[j] != CHAN_DISABLED) {
num_fmu_channels = MAX(num_fmu_channels, group.chan[j]+1);
group.ch_mask |= (1U<<group.chan[j]);
}
#ifdef HAL_WITH_BIDIR_DSHOT
group.bdshot.telem_tim_ch[j] = CHAN_DISABLED;
#endif
}
if (group.ch_mask != 0) {
pwmStart(group.pwm_drv, &group.pwm_cfg);
group.pwm_started = true;
}
chVTObjectInit(&group.dma_timeout);
}
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.init();
// with IOMCU the local (FMU) channels start at 8
chan_offset = 8;
}
#endif
chMtxObjectInit(&trigger_mutex);
// setup default output rate of 50Hz
set_freq(0xFFFF ^ ((1U<<chan_offset)-1), 50);
#ifdef HAL_GPIO_PIN_SAFETY_IN
safety_state = AP_HAL::Util::SAFETY_DISARMED;
#endif
#if RCOU_DSHOT_TIMING_DEBUG
hal.gpio->pinMode(54, 1);
hal.gpio->pinMode(55, 1);
hal.gpio->pinMode(56, 1);
hal.gpio->pinMode(57, 1);
#endif
_initialised = true;
}
/*
thread for handling RCOutput send
*/
void RCOutput::rcout_thread()
{
uint32_t last_thread_run_us = 0; // last time we did a 1kHz run of rcout
rcout_thread_ctx = chThdGetSelfX();
// don't start outputting until fully configured
while (!hal.scheduler->is_system_initialized()) {
hal.scheduler->delay_microseconds(1000);
}
while (true) {
const uint32_t period_us = AP_HAL::micros() - last_thread_run_us;
if (period_us < 1000) {
chEvtWaitOneTimeout(EVT_PWM_SEND, chTimeUS2I(1000 - period_us));
}
// start the clock
last_thread_run_us = AP_HAL::micros();
// main thread requested a new dshot send
if (!serial_group) {
// do a blocking send now, to guarantee DShot sends at
// above 1000 Hz. This makes the protocol more reliable on
// long cables, and also keeps some ESCs happy that don't
// like low rates
dshot_send_groups();
// now unlock everything
dshot_collect_dma_locks(last_thread_run_us);
}
// process any pending RC output requests
timer_tick(last_thread_run_us);
}
}
#ifndef HAL_NO_SHARED_DMA
// release locks on the groups that are pending in reverse order
void RCOutput::dshot_collect_dma_locks(uint32_t last_run_us)
{
if (NUM_GROUPS == 0) {
return;
}
for (int8_t i = NUM_GROUPS - 1; i >= 0; i--) {
pwm_group &group = pwm_group_list[i];
if (group.dma_handle != nullptr && group.dma_handle->is_locked()) {
// calculate how long we have left
const uint32_t deltat = AP_HAL::micros() - last_run_us;
// if we have time left wait for the event
eventmask_t mask = 0;
if (deltat < 1000) {
mask = chEvtWaitOneTimeout(group.dshot_event_mask, chTimeUS2I(1000 - deltat));
}
// no time left cancel and restart
if (!mask) {
dma_cancel(group);
}
group.dshot_waiter = nullptr;
#ifdef HAL_WITH_BIDIR_DSHOT
// if using input capture DMA then clean up
if (group.bdshot.enabled) {
// the channel index only moves on with success
const uint8_t chan = mask ? group.bdshot.prev_telem_chan
: group.bdshot.curr_telem_chan;
// only unlock if not shared
if (group.bdshot.ic_dma_handle[chan] != nullptr
&& group.bdshot.ic_dma_handle[chan] != group.dma_handle) {
group.bdshot.ic_dma_handle[chan]->unlock();
}
}
#endif
group.dma_handle->unlock();
}
}
}
#endif // HAL_NO_SHARED_DMA
/*
setup the output frequency for a group and start pwm output
*/
void RCOutput::set_freq_group(pwm_group &group)
{
if (mode_requires_dma(group.current_mode)) {
// speed setup in DMA handler
return;
}
uint16_t freq_set = group.rc_frequency;
uint32_t old_clock = group.pwm_cfg.frequency;
uint32_t old_period = group.pwm_cfg.period;
if (freq_set > 400 || group.current_mode == MODE_PWM_ONESHOT125) {
// use a 8MHz clock for higher frequencies or for
// oneshot125. Using 8MHz for oneshot125 results in the full
// 1000 steps for smooth output
group.pwm_cfg.frequency = 8000000;
} else if (freq_set <= 400) {
// use a 1MHz clock
group.pwm_cfg.frequency = 1000000;
}
// check if the frequency is possible, and keep halving
// down to 1MHz until it is OK with the hardware timer we
// are using. If we don't do this we'll hit an assert in
// the ChibiOS PWM driver on some timers
PWMDriver *pwmp = group.pwm_drv;
uint32_t psc = (pwmp->clock / pwmp->config->frequency) - 1;
while ((psc > 0xFFFF || ((psc + 1) * pwmp->config->frequency) != pwmp->clock) &&
group.pwm_cfg.frequency > 1000000) {
group.pwm_cfg.frequency /= 2;
psc = (pwmp->clock / pwmp->config->frequency) - 1;
}
if (group.current_mode == MODE_PWM_ONESHOT ||
group.current_mode == MODE_PWM_ONESHOT125) {
// force a period of 0, meaning no pulses till we trigger
group.pwm_cfg.period = 0;
} else {
group.pwm_cfg.period = group.pwm_cfg.frequency/freq_set;
}
bool force_reconfig = false;
for (uint8_t j=0; j<4; j++) {
if (group.pwm_cfg.channels[j].mode == PWM_OUTPUT_ACTIVE_LOW) {
group.pwm_cfg.channels[j].mode = PWM_OUTPUT_ACTIVE_HIGH;
force_reconfig = true;
}
if (group.pwm_cfg.channels[j].mode == PWM_COMPLEMENTARY_OUTPUT_ACTIVE_LOW) {
group.pwm_cfg.channels[j].mode = PWM_COMPLEMENTARY_OUTPUT_ACTIVE_HIGH;
force_reconfig = true;
}
}
if (old_clock != group.pwm_cfg.frequency ||
old_period != group.pwm_cfg.period ||
!group.pwm_started ||
force_reconfig) {
// we need to stop and start to setup the new clock
if (group.pwm_started) {
pwmStop(group.pwm_drv);
}
pwmStart(group.pwm_drv, &group.pwm_cfg);
group.pwm_started = true;
}
pwmChangePeriod(group.pwm_drv, group.pwm_cfg.period);
}
/*
set output frequency in HZ for a set of channels given by a mask
*/
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
// change frequency on IOMCU
uint16_t io_chmask = chmask & 0xFF;
if (io_chmask) {
// disallow changing frequency of this group if it is greater than the default
for (uint8_t i=0; i<ARRAY_SIZE(iomcu.ch_masks); i++) {
const uint16_t mask = io_chmask & iomcu.ch_masks[i];
if (mask != 0) {
if (freq_hz > 50) {
io_fast_channel_mask |= mask;
} else {
io_fast_channel_mask &= ~mask;
}
}
}
iomcu.set_freq(io_fast_channel_mask, freq_hz);
}
}
#endif
// convert to a local (FMU) channel mask
chmask >>= chan_offset;
if (chmask == 0) {
return;
}
/*
we enable the new frequency on all groups that have one
of the requested channels. This means we may enable high
speed on some channels that aren't requested, but that
is needed in order to fly a vehicle such as a hex
multicopter properly
*/
for (auto &group : pwm_group_list) {
// greater than 400 doesn't give enough room at higher periods for
// the down pulse. This still allows for high rate with oneshot and dshot.
uint16_t group_freq = freq_hz;
if (group_freq > 400 && group.current_mode != MODE_PWM_BRUSHED) {
group_freq = 400;
}
if ((group.ch_mask & chmask) != 0) {
group.rc_frequency = group_freq;
set_freq_group(group);
// disallow changing frequency of this group if it is greater than the default
if (group_freq > 50) {
fast_channel_mask |= group.ch_mask;
}
}
}
}
/*
set default output rate
*/
void RCOutput::set_default_rate(uint16_t freq_hz)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.set_default_rate(freq_hz);
}
#endif
for (auto &group : pwm_group_list) {
if ((group.ch_mask & fast_channel_mask) || group.ch_mask == 0) {
// don't change fast channels
continue;
}
group.pwm_cfg.period = group.pwm_cfg.frequency/freq_hz;
if (group.pwm_started) {
pwmChangePeriod(group.pwm_drv, group.pwm_cfg.period);
}
}
}
/*
find pwm_group and index in group given a channel number
*/
RCOutput::pwm_group *RCOutput::find_chan(uint8_t chan, uint8_t &group_idx)
{
if (chan >= max_channels) {
return nullptr;
}
if (chan < chan_offset) {
return nullptr;
}
chan -= chan_offset;
for (auto &group : pwm_group_list) {
for (uint8_t j = 0; j < 4; j++) {
if (group.chan[j] == chan) {
group_idx = j;
return &group;
}
}
}
return nullptr;
}
uint16_t RCOutput::get_freq(uint8_t chan)
{
#if HAL_WITH_IO_MCU
if (chan < chan_offset) {
return iomcu.get_freq(chan);
}
#endif
uint8_t i;
pwm_group *grp = find_chan(chan, i);
if (grp) {
return grp->pwm_drv->config->frequency / grp->pwm_drv->period;
}
// assume 50Hz default
return 50;
}
void RCOutput::enable_ch(uint8_t chan)
{
uint8_t i;
pwm_group *grp = find_chan(chan, i);
if (grp) {
en_mask |= 1U << (chan - chan_offset);
}
}
void RCOutput::disable_ch(uint8_t chan)
{
uint8_t i;
pwm_group *grp = find_chan(chan, i);
if (grp) {
pwmDisableChannel(grp->pwm_drv, i);
en_mask &= ~(1U<<(chan - chan_offset));
}
}
void RCOutput::write(uint8_t chan, uint16_t period_us)
{
if (chan >= max_channels) {
return;
}
last_sent[chan] = period_us;
#if HAL_WITH_IO_MCU
// handle IO MCU channels
if (AP_BoardConfig::io_enabled()) {
uint16_t io_period_us = period_us;
if ((iomcu_mode == MODE_PWM_ONESHOT125) && ((1U<<chan) & io_fast_channel_mask)) {
// the iomcu only has one oneshot setting, so we need to scale by a factor
// of 8 here for oneshot125
io_period_us /= 8;
}
iomcu.write_channel(chan, io_period_us);
}
#endif
if (chan < chan_offset) {
return;
}
if (safety_state == AP_HAL::Util::SAFETY_DISARMED && !(safety_mask & (1U<<chan))) {
// implement safety pwm value
period_us = safe_pwm[chan];
}
chan -= chan_offset;
period[chan] = period_us;
if (chan < num_fmu_channels) {
active_fmu_channels = MAX(chan+1, active_fmu_channels);
if (!corked) {
push_local();
}
}
}
/*
push values to local channels from period[] array
*/
void RCOutput::push_local(void)
{
if (active_fmu_channels == 0) {
return;
}
uint16_t outmask = (1U<<active_fmu_channels)-1;
outmask &= en_mask;
uint16_t widest_pulse = 0;
uint8_t need_trigger = 0;
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
for (auto &group : pwm_group_list) {
if (serial_group) {
continue;
}
if (!group.pwm_started) {
continue;
}
for (uint8_t j = 0; j < 4; j++) {
uint8_t chan = group.chan[j];
if (chan == CHAN_DISABLED) {
continue;
}
if (outmask & (1UL<<chan)) {
uint32_t period_us = period[chan];
if (safety_on && !(safety_mask & (1U<<(chan+chan_offset)))) {
// safety is on, overwride pwm
period_us = safe_pwm[chan+chan_offset];
}
if (group.current_mode == MODE_PWM_BRUSHED) {
if (period_us <= _esc_pwm_min) {
period_us = 0;
} else if (period_us >= _esc_pwm_max) {
period_us = PWM_FRACTION_TO_WIDTH(group.pwm_drv, 1, 1);
} else {
period_us = PWM_FRACTION_TO_WIDTH(group.pwm_drv,\
(_esc_pwm_max - _esc_pwm_min), (period_us - _esc_pwm_min));
}
pwmEnableChannel(group.pwm_drv, j, period_us);
} else if (group.current_mode == MODE_PWM_ONESHOT125) {
// this gives us a width in 125 ns increments, giving 1000 steps over the 125 to 250 range
uint32_t width = ((group.pwm_cfg.frequency/1000000U) * period_us) / 8U;
pwmEnableChannel(group.pwm_drv, j, width);
// scale the period down so we don't delay for longer than we need to
period_us /= 8;
}
else if (group.current_mode < MODE_PWM_DSHOT150) {
uint32_t width = (group.pwm_cfg.frequency/1000000U) * period_us;
pwmEnableChannel(group.pwm_drv, j, width);
}
#ifndef DISABLE_DSHOT
else if (is_dshot_protocol(group.current_mode) || group.current_mode == MODE_NEOPIXEL || group.current_mode == MODE_PROFILED) {
// set period_us to time for pulse output, to enable very fast rates
period_us = group.dshot_pulse_time_us;
}
#endif //#ifndef DISABLE_DSHOT
if (period_us > widest_pulse) {
widest_pulse = period_us;
}
if (group.current_mode == MODE_PWM_ONESHOT ||
group.current_mode == MODE_PWM_ONESHOT125 ||
group.current_mode == MODE_NEOPIXEL ||
group.current_mode == MODE_PROFILED ||
is_dshot_protocol(group.current_mode)) {
const uint8_t i = &group - pwm_group_list;
need_trigger |= (1U<<i);
}
}
}
}
if (widest_pulse > 2300) {
widest_pulse = 2300;
}
trigger_widest_pulse = widest_pulse;
trigger_groupmask = need_trigger;
if (trigger_groupmask) {
trigger_groups();
}
}
uint16_t RCOutput::read(uint8_t chan)
{
if (chan >= max_channels) {
return 0;
}
#if HAL_WITH_IO_MCU
if (chan < chan_offset) {
return iomcu.read_channel(chan);
}
#endif
chan -= chan_offset;
return period[chan];
}
void RCOutput::read(uint16_t* period_us, uint8_t len)
{
if (len > max_channels) {
len = max_channels;
}
#if HAL_WITH_IO_MCU
for (uint8_t i=0; i<MIN(len, chan_offset); i++) {
period_us[i] = iomcu.read_channel(i);
}
#endif
if (len <= chan_offset) {
return;
}
len -= chan_offset;
period_us += chan_offset;
memcpy(period_us, period, len*sizeof(uint16_t));
}
uint16_t RCOutput::read_last_sent(uint8_t chan)
{
if (chan >= max_channels) {
return 0;
}
return last_sent[chan];
}
void RCOutput::read_last_sent(uint16_t* period_us, uint8_t len)
{
if (len > max_channels) {
len = max_channels;
}
for (uint8_t i=0; i<len; i++) {
period_us[i] = read_last_sent(i);
}
}
/*
does an output mode require the use of the UP DMA channel?
*/
bool RCOutput::mode_requires_dma(enum output_mode mode) const
{
#ifdef DISABLE_DSHOT
return false;
#else
return is_dshot_protocol(mode) || (mode == MODE_NEOPIXEL) || (mode == MODE_PROFILED);
#endif //#ifdef DISABLE_DSHOT
}
/*
setup a group for DMA output at a given bitrate. The bit_width is
the value for a pulse width in the DMA buffer for a full bit.
This is used for both DShot and serial output
*/
bool RCOutput::setup_group_DMA(pwm_group &group, uint32_t bitrate, uint32_t bit_width, bool active_high, const uint16_t buffer_length, bool choose_high,
uint32_t pulse_time_us)
{
#ifndef DISABLE_DSHOT
// for dshot we setup for DMAR based output
if (!group.dma_handle) {
group.dma_handle = new Shared_DMA(group.dma_up_stream_id, SHARED_DMA_NONE,
FUNCTOR_BIND_MEMBER(&RCOutput::dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&RCOutput::dma_deallocate, void, Shared_DMA *));
if (!group.dma_handle) {
return false;
}
}
// hold the lock during setup, to ensure there isn't a DMA operation ongoing
group.dma_handle->lock();
if (!group.dma_buffer || buffer_length != group.dma_buffer_len) {
if (group.dma_buffer) {
hal.util->free_type(group.dma_buffer, group.dma_buffer_len, AP_HAL::Util::MEM_DMA_SAFE);
group.dma_buffer_len = 0;
}
group.dma_buffer = (uint32_t *)hal.util->malloc_type(buffer_length, AP_HAL::Util::MEM_DMA_SAFE);
if (!group.dma_buffer) {
group.dma_handle->unlock();
return false;
}
group.dma_buffer_len = buffer_length;
}
// reset the pulse time inside the lock
group.dshot_pulse_time_us = pulse_time_us;
#ifdef HAL_WITH_BIDIR_DSHOT
// configure input capture DMA if required
if (is_bidir_dshot_enabled()) {
if (!bdshot_setup_group_ic_DMA(group)) {
group.dma_handle->unlock();
return false;
}
}
#endif
// configure timer driver for DMAR at requested rate
if (group.pwm_started) {
pwmStop(group.pwm_drv);
group.pwm_started = false;
}
// adjust frequency to give an allowed value given the
// clock. There is probably a better way to do this
const uint32_t original_bitrate = bitrate;
uint32_t freq = 0;
uint32_t target_frequency = bitrate * bit_width;
while (true) {
uint32_t clock_hz = group.pwm_drv->clock;
target_frequency = bitrate * bit_width;
uint32_t prescaler = clock_hz / target_frequency;
freq = clock_hz / prescaler;
// hal.console->printf("CLOCK=%u BW=%u FREQ=%u PRE=%u BR=%u\n", clock_hz, bit_width, freq/bit_width, prescaler, bitrate);
if (prescaler > 0x8000) {
group.dma_handle->unlock();
return false;
}
if (!choose_high) {
break;
}
// we want to choose a frequency that gives at least the
// target, erring on the high side not low side
uint32_t actual_bitrate = freq / bit_width;
if (actual_bitrate >= original_bitrate || bitrate < 10000) {
break;
}
bitrate += 10000;
if (bitrate >= 2 * original_bitrate) {
break;
}
}
group.pwm_cfg.frequency = freq;
group.pwm_cfg.period = bit_width;
group.pwm_cfg.dier = TIM_DIER_UDE;
group.pwm_cfg.cr2 = 0;
group.bit_width_mul = (freq + (target_frequency/2)) / target_frequency;
for (uint8_t j=0; j<4; j++) {
pwmmode_t mode = group.pwm_cfg.channels[j].mode;
if (mode != PWM_OUTPUT_DISABLED) {
if(mode == PWM_COMPLEMENTARY_OUTPUT_ACTIVE_LOW || mode == PWM_COMPLEMENTARY_OUTPUT_ACTIVE_HIGH) {
group.pwm_cfg.channels[j].mode = active_high ? PWM_COMPLEMENTARY_OUTPUT_ACTIVE_HIGH : PWM_COMPLEMENTARY_OUTPUT_ACTIVE_LOW;
} else {
group.pwm_cfg.channels[j].mode = active_high ? PWM_OUTPUT_ACTIVE_HIGH : PWM_OUTPUT_ACTIVE_LOW;
}
}
}
pwmStart(group.pwm_drv, &group.pwm_cfg);
group.pwm_started = true;
for (uint8_t j=0; j<4; j++) {
if (group.chan[j] != CHAN_DISABLED) {
pwmEnableChannel(group.pwm_drv, j, 0);
}
}
group.dma_handle->unlock();
return true;
#else
return false;
#endif //#ifndef DISABLE_DSHOT
}
/*
setup output mode for a group, using group.current_mode. Used to restore output
after serial operations
*/
void RCOutput::set_group_mode(pwm_group &group)
{
if (group.pwm_started) {
pwmStop(group.pwm_drv);
group.pwm_started = false;
}
memset(group.bdshot.erpm, 0, 4*sizeof(uint16_t));
switch (group.current_mode) {
case MODE_PWM_BRUSHED:
// force zero output initially
for (uint8_t i=0; i<4; i++) {
if (group.chan[i] == CHAN_DISABLED) {
continue;
}
uint8_t chan = chan_offset + group.chan[i];
write(chan, 0);
}
break;
case MODE_NEOPIXEL:
case MODE_PROFILED:
{
uint8_t bits_per_pixel = 24;
bool active_high = true;
if (group.current_mode == MODE_PROFILED) {
bits_per_pixel = 25;
active_high = false;
}
const uint32_t rate = protocol_bitrate(group.current_mode);
const uint32_t bit_period = 20;
// configure timer driver for DMAR at requested rate
const uint8_t pad_end_bits = 8;
const uint8_t pad_start_bits = 1;
const uint8_t channels_per_group = 4;
const uint16_t bit_length = bits_per_pixel * group.serial_nleds + pad_start_bits + pad_end_bits;
const uint16_t buffer_length = bit_length * sizeof(uint32_t) * channels_per_group;
// calculate min time between pulses taking into account the DMAR parallelism
const uint32_t pulse_time_us = 1000000UL * bit_length / rate;
if (!setup_group_DMA(group, rate, bit_period, active_high, buffer_length, true, pulse_time_us)) {
group.current_mode = MODE_PWM_NONE;
break;
}
break;
}
case MODE_PWM_DSHOT150 ... MODE_PWM_DSHOT1200: {
const uint32_t rate = protocol_bitrate(group.current_mode);
const uint32_t bit_period = 20;
bool active_high = is_bidir_dshot_enabled() ? false : true;
// calculate min time between pulses
const uint32_t pulse_send_time_us = 1000000UL * dshot_bit_length / rate;
// configure timer driver for DMAR at requested rate
if (!setup_group_DMA(group, rate, bit_period, active_high,
MAX(DSHOT_BUFFER_LENGTH, GCR_TELEMETRY_BUFFER_LEN), false, pulse_send_time_us)) {
group.current_mode = MODE_PWM_NORMAL;
break;
}
if (is_bidir_dshot_enabled()) {
group.dshot_pulse_send_time_us = pulse_send_time_us;
// to all intents and purposes the pulse time of send and receive are the same
group.dshot_pulse_time_us = pulse_send_time_us + pulse_send_time_us + 30;
}
break;
}
case MODE_PWM_ONESHOT:
case MODE_PWM_ONESHOT125:
// for oneshot we set a period of 0, which results in no pulses till we trigger
group.pwm_cfg.period = 0;
group.rc_frequency = 1;
if (group.pwm_started) {
pwmChangePeriod(group.pwm_drv, group.pwm_cfg.period);
}
break;
case MODE_PWM_NORMAL:
case MODE_PWM_NONE:
// nothing needed
break;
}
set_freq_group(group);
if (group.current_mode != MODE_PWM_NONE &&
!group.pwm_started) {
pwmStart(group.pwm_drv, &group.pwm_cfg);
group.pwm_started = true;
for (uint8_t j=0; j<4; j++) {
if (group.chan[j] != CHAN_DISABLED) {
pwmEnableChannel(group.pwm_drv, j, 0);
}
}
}
}
/*
setup output mode
*/
void RCOutput::set_output_mode(uint16_t mask, const enum output_mode mode)
{
for (auto &group : pwm_group_list) {
enum output_mode thismode = mode;
if (((group.ch_mask << chan_offset) & mask) == 0) {
// this group is not affected
continue;
}
if (mode_requires_dma(thismode) && !group.have_up_dma) {
thismode = MODE_PWM_NORMAL;
}
if (mode > MODE_PWM_NORMAL) {
fast_channel_mask |= group.ch_mask;
}
// setup of the group mode also sets up DMA which might have changed, so always
// redo it if using DMA
if (group.current_mode != thismode) {
group.current_mode = thismode;
set_group_mode(group);
}
}
#if HAL_WITH_IO_MCU
if ((mode == MODE_PWM_ONESHOT ||
mode == MODE_PWM_ONESHOT125) &&
(mask & ((1U<<chan_offset)-1)) &&
AP_BoardConfig::io_enabled()) {
iomcu_mode = mode;
// also setup IO to use a 1Hz frequency, so we only get output
// when we trigger
iomcu.set_freq(io_fast_channel_mask, 1);
iomcu.set_oneshot_mode();
return;
}
if (mode == MODE_PWM_BRUSHED &&
(mask & ((1U<<chan_offset)-1)) &&
AP_BoardConfig::io_enabled()) {
iomcu_mode = mode;
iomcu.set_brushed_mode();
return;
}
#endif
}
/*
* get output mode banner to inform user of how outputs are configured
*/
bool RCOutput::get_output_mode_banner(char banner_msg[], uint8_t banner_msg_len) const
{
// create array of each channel's mode
output_mode ch_mode[chan_offset + NUM_GROUPS * ARRAY_SIZE(pwm_group::chan)] = {};
bool have_nonzero_modes = false;
#if HAL_WITH_IO_MCU
// fill in ch_mode array for IOMCU channels
if (AP_BoardConfig::io_enabled()) {
for (uint8_t i = 0; i < chan_offset; i++ ) {
ch_mode[i] = iomcu_mode;
}
have_nonzero_modes = (chan_offset > 0) && (iomcu_mode != MODE_PWM_NONE);
}
#endif
// fill in ch_mode array for FMU channels
for (auto &group : pwm_group_list) {
if (group.current_mode != MODE_PWM_NONE) {
for (uint8_t j = 0; j < ARRAY_SIZE(group.chan); j++) {
if (group.chan[j] != CHAN_DISABLED) {
const uint8_t chan_num = group.chan[j] + chan_offset;
if (chan_num < ARRAY_SIZE(ch_mode)) {
ch_mode[chan_num] = group.current_mode;
have_nonzero_modes = true;
}
}
}
}
}
// handle simple case
if (!have_nonzero_modes) {
hal.util->snprintf(banner_msg, banner_msg_len, "RCOut: None");
return true;
}
// write banner to banner_msg
hal.util->snprintf(banner_msg, banner_msg_len, "RCOut:");
uint8_t curr_mode_lowest_ch = 0;
for (uint8_t k = 1; k < ARRAY_SIZE(ch_mode); k++) {
if (ch_mode[k-1] != ch_mode[k]) {
if (ch_mode[k-1] != MODE_PWM_NONE) {
append_to_banner(banner_msg, banner_msg_len, ch_mode[k-1], curr_mode_lowest_ch + 1, k);
}
curr_mode_lowest_ch = k;
}
}
// add final few channel's mode to banner (won't have been done by above loop)
const uint8_t final_index = ARRAY_SIZE(ch_mode)-1;
if (ch_mode[final_index] != MODE_PWM_NONE) {
append_to_banner(banner_msg, banner_msg_len, ch_mode[final_index], curr_mode_lowest_ch + 1, final_index + 1);
}
return true;
}
/*
start corking output
*/
void RCOutput::cork(void)
{
corked = true;
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.cork();
}
#endif
}
/*
stop corking output
*/
void RCOutput::push(void)
{
corked = false;
push_local();
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.push();
}
#endif
}
/*
enable sbus output
*/
bool RCOutput::enable_px4io_sbus_out(uint16_t rate_hz)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
return iomcu.enable_sbus_out(rate_hz);
}
#endif
return false;
}
/*
trigger output groups for oneshot or dshot modes
*/
void RCOutput::trigger_groups(void)
{
if (!chMtxTryLock(&trigger_mutex)) {
return;
}
uint64_t now = AP_HAL::micros64();
if (now < min_pulse_trigger_us) {
// guarantee minimum pulse separation
hal.scheduler->delay_microseconds(min_pulse_trigger_us - now);
}
osalSysLock();
for (auto &group : pwm_group_list) {
if (irq.waiter) {
// doing serial output, don't send pulses
continue;
}
if (group.current_mode == MODE_PWM_ONESHOT ||
group.current_mode == MODE_PWM_ONESHOT125) {
const uint8_t i = &group - pwm_group_list;
if (trigger_groupmask & (1U<<i)) {
// this triggers pulse output for a channel group
group.pwm_drv->tim->EGR = STM32_TIM_EGR_UG;
}
}
}
osalSysUnlock();
#ifndef HAL_NO_RCOUT_THREAD
// trigger a PWM send
if (!serial_group && hal.scheduler->in_main_thread()) {
chEvtSignal(rcout_thread_ctx, EVT_PWM_SEND);
}
#endif
/*
calculate time that we are allowed to trigger next pulse
to guarantee at least a 50us gap between pulses
*/
min_pulse_trigger_us = AP_HAL::micros64() + trigger_widest_pulse + 50;
chMtxUnlock(&trigger_mutex);
}
/*
periodic timer. This is used for oneshot and dshot modes, plus for
safety switch update. Runs every 1000us.
*/
void RCOutput::timer_tick(uint32_t last_run_us)
{
safety_update();
if (serial_group) {
return;
}
// if we have enough time left send out LED data
if (serial_led_pending && AP_HAL::micros() - last_run_us < 500) {
serial_led_pending = false;
for (auto &group : pwm_group_list) {
serial_led_pending |= !serial_led_send(group);
}
// release locks on the groups that are pending in reverse order
dshot_collect_dma_locks(last_run_us);
}
if (min_pulse_trigger_us == 0) {
return;
}
uint32_t now = AP_HAL::micros();
if (now > min_pulse_trigger_us &&
now - min_pulse_trigger_us > 4000) {
// trigger at a minimum of 250Hz
trigger_groups();
}
}
// send dshot for all groups that support it
void RCOutput::dshot_send_groups()
{
if (serial_group) {
return;
}
// actually do a dshot send
for (auto &group : pwm_group_list) {
if (group.can_send_dshot_pulse()) {
dshot_send(group);
// delay sending the next group by the same amount as the IRQ dead time
// to avoid irq collisions
if (group.bdshot.enabled) {
hal.scheduler->delay_microseconds(10U);
}
}
}
}
/*
allocate DMA channel
*/
void RCOutput::dma_allocate(Shared_DMA *ctx)
{
for (auto &group : pwm_group_list) {
if (group.dma_handle == ctx && group.dma == nullptr) {
chSysLock();
group.dma = dmaStreamAllocI(group.dma_up_stream_id, 10, dma_up_irq_callback, &group);
chSysUnlock();
#if STM32_DMA_SUPPORTS_DMAMUX
if (group.dma) {
dmaSetRequestSource(group.dma, group.dma_up_channel);
}
#endif
}
}
}
/*
deallocate DMA channel
*/
void RCOutput::dma_deallocate(Shared_DMA *ctx)
{
for (auto &group : pwm_group_list) {
if (group.dma_handle == ctx && group.dma != nullptr) {
chSysLock();
dmaStreamFreeI(group.dma);
group.dma = nullptr;
chSysUnlock();
}
}
}
/*
create a DSHOT 16 bit packet. Based on prepareDshotPacket from betaflight
*/
uint16_t RCOutput::create_dshot_packet(const uint16_t value, bool telem_request, bool bidir_telem)
{
uint16_t packet = (value << 1);
if (telem_request) {
packet |= 1;
}
// compute checksum
uint16_t csum = 0;
uint16_t csum_data = packet;
for (uint8_t i = 0; i < 3; i++) {
csum ^= csum_data;
csum_data >>= 4;
}
// trigger bi-dir dshot telemetry
if (bidir_telem) {
csum = ~csum;
}
// append checksum
csum &= 0xf;
packet = (packet << 4) | csum;
return packet;
}
/*
fill in a DMA buffer for dshot
*/
void RCOutput::fill_DMA_buffer_dshot(uint32_t *buffer, uint8_t stride, uint16_t packet, uint16_t clockmul)
{
const uint32_t DSHOT_MOTOR_BIT_0 = 7 * clockmul;
const uint32_t DSHOT_MOTOR_BIT_1 = 14 * clockmul;
uint16_t i = 0;
for (; i < dshot_pre; i++) {
buffer[i * stride] = 0;
}
for (; i < 16 + dshot_pre; i++) {
buffer[i * stride] = (packet & 0x8000) ? DSHOT_MOTOR_BIT_1 : DSHOT_MOTOR_BIT_0;
packet <<= 1;
}
for (; i<dshot_bit_length; i++) {
buffer[i * stride] = 0;
}
}
/*
send a set of DShot packets for a channel group
This call be called in blocking mode from the timer, in which case it waits for the DMA lock.
In normal operation it doesn't wait for the DMA lock.
*/
void RCOutput::dshot_send(pwm_group &group)
{
#ifndef DISABLE_DSHOT
if (irq.waiter || (group.dshot_state != DshotState::IDLE && group.dshot_state != DshotState::RECV_COMPLETE)) {
// doing serial output or DMAR input, don't send DShot pulses
return;
}
// first make sure we have the DMA channel before anything else
osalDbgAssert(!group.dma_handle->is_locked(), "DMA handle is already locked");
group.dma_handle->lock();
// only the timer thread releases the locks
group.dshot_waiter = rcout_thread_ctx;
#ifdef HAL_WITH_BIDIR_DSHOT
// assume that we won't be able to get the input capture lock
group.bdshot.enabled = false;
// now grab the input capture lock if we are able, we can only enable bi-dir on a group basis
if (((_bdshot.mask & group.ch_mask) == group.ch_mask) && group.has_ic()) {
if (group.has_shared_ic_up_dma()) {
// no locking required
group.bdshot.enabled = true;
} else {
osalDbgAssert(!group.bdshot.ic_dma_handle[group.bdshot.curr_telem_chan]->is_locked(), "DMA handle is already locked");
group.bdshot.ic_dma_handle[group.bdshot.curr_telem_chan]->lock();
group.bdshot.enabled = true;
}
}
// if the last transaction returned telemetry, decode it
if (group.dshot_state == DshotState::RECV_COMPLETE) {
uint8_t chan = group.chan[group.bdshot.prev_telem_chan];
uint32_t now = AP_HAL::millis();
if (bdshot_decode_dshot_telemetry(group, group.bdshot.prev_telem_chan)) {
_bdshot.erpm_clean_frames[chan]++;
} else {
_bdshot.erpm_errors[chan]++;
}
// reset statistics periodically
if (now - _bdshot.erpm_last_stats_ms[chan] > 5000) {
_bdshot.erpm_clean_frames[chan] = 0;
_bdshot.erpm_errors[chan] = 0;
_bdshot.erpm_last_stats_ms[chan] = now;
}
}
if (group.bdshot.enabled) {
if (group.pwm_started) {
pwmStop(group.pwm_drv);
}
pwmStart(group.pwm_drv, &group.pwm_cfg);
group.pwm_started = true;
// we can be more precise for capture timer
group.bdshot.telempsc = (uint16_t)(lrintf(((float)group.pwm_drv->clock / bdshot_get_output_rate_hz(group.current_mode) + 0.01f)/TELEM_IC_SAMPLE) - 1);
}
#endif
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
memset((uint8_t *)group.dma_buffer, 0, DSHOT_BUFFER_LENGTH);
for (uint8_t i=0; i<4; i++) {
uint8_t chan = group.chan[i];
if (chan != CHAN_DISABLED) {
// retrieve the last erpm values
_bdshot.erpm[chan] = group.bdshot.erpm[i];
uint16_t pwm = period[chan];
if (safety_on && !(safety_mask & (1U<<(chan+chan_offset)))) {
// safety is on, overwride pwm
pwm = safe_pwm[chan+chan_offset];
}
const uint16_t chan_mask = (1U<<chan);
if (pwm == 0) {
// no output
continue;
}
pwm = constrain_int16(pwm, 1000, 2000);
uint16_t value = 2 * (pwm - 1000);
if (chan_mask & (reversible_mask>>chan_offset)) {
// this is a DShot-3D output, map so that 1500 PWM is zero throttle reversed
if (value < 1000) {
value = 2000 - value;
} else if (value > 1000) {
value = value - 1000;
} else {
// mid-throttle is off
value = 0;
}
}
if (value != 0) {
// dshot values are from 48 to 2047. Zero means off.
value += 47;
}
bool request_telemetry = (telem_request_mask & chan_mask)?true:false;
uint16_t packet = create_dshot_packet(value, request_telemetry, group.bdshot.enabled);
if (request_telemetry) {
telem_request_mask &= ~chan_mask;
}
fill_DMA_buffer_dshot(group.dma_buffer + i, 4, packet, group.bit_width_mul);
}
}
chEvtGetAndClearEvents(group.dshot_event_mask);
// start sending the pulses out
send_pulses_DMAR(group, DSHOT_BUFFER_LENGTH);
#endif //#ifndef DISABLE_DSHOT
}
/*
send a set of Serial LED packets for a channel group
return true if send was successful
*/
bool RCOutput::serial_led_send(pwm_group &group)
{
if (!group.serial_led_pending
|| (group.current_mode != MODE_NEOPIXEL && group.current_mode != MODE_PROFILED)) {
return true;
}
#ifndef DISABLE_DSHOT
if (irq.waiter || !group.dma_handle->lock_nonblock()) {
// doing serial output, don't send Serial LED pulses
return false;
}
{
WITH_SEMAPHORE(group.serial_led_mutex);
group.serial_led_pending = false;
group.prepared_send = false;
// fill the DMA buffer while we have the lock
fill_DMA_buffer_serial_led(group);
}
group.dshot_waiter = rcout_thread_ctx;
chEvtGetAndClearEvents(group.dshot_event_mask);
// start sending the pulses out
send_pulses_DMAR(group, group.dma_buffer_len);
#endif //#ifndef DISABLE_DSHOT
return true;
}
/*
send a series of pulses for a group using DMAR. Pulses must have
been encoded into the group dma_buffer with interleaving for the 4
channels in the group
*/
void RCOutput::send_pulses_DMAR(pwm_group &group, uint32_t buffer_length)
{
#ifndef DISABLE_DSHOT
osalDbgAssert(group.dma && group.dma_buffer, "DMA structures are corrupt");
/*
The DMA approach we are using is based on the DMAR method from
betaflight. We use the TIMn_UP DMA channel for the timer, and
setup an interleaved set of pulse durations, with a stride of 4
(for the 4 channels). We use the DMAR register to point the DMA
engine at the 4 CCR registers of the timer, so it fills in the
pulse widths for each timer in turn. This means we only use a
single DMA channel for groups of 4 timer channels. See the "DMA
address for full transfer TIMx_DMAR" section of the
datasheet. Many thanks to the betaflight developers for coming
up with this great method.
*/
TOGGLE_PIN_DEBUG(54);
dmaStreamSetPeripheral(group.dma, &(group.pwm_drv->tim->DMAR));
stm32_cacheBufferFlush(group.dma_buffer, buffer_length);
dmaStreamSetMemory0(group.dma, group.dma_buffer);
dmaStreamSetTransactionSize(group.dma, buffer_length/sizeof(uint32_t));
#ifdef STM32_DMA_FCR_FTH_FULL
dmaStreamSetFIFO(group.dma, STM32_DMA_FCR_DMDIS | STM32_DMA_FCR_FTH_FULL);
#endif
dmaStreamSetMode(group.dma,
STM32_DMA_CR_CHSEL(group.dma_up_channel) |
STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_PSIZE_WORD | STM32_DMA_CR_MSIZE_WORD |
STM32_DMA_CR_MINC | STM32_DMA_CR_PL(3) |
STM32_DMA_CR_TEIE | STM32_DMA_CR_TCIE);
// setup for burst strided transfers into the timers 4 CCR registers
const uint8_t ccr_ofs = offsetof(stm32_tim_t, CCR)/4;
group.pwm_drv->tim->DCR = STM32_TIM_DCR_DBA(ccr_ofs) | STM32_TIM_DCR_DBL(3);
group.dshot_state = DshotState::SEND_START;
TOGGLE_PIN_DEBUG(54);
dmaStreamEnable(group.dma);
// record when the transaction was started
group.last_dmar_send_us = AP_HAL::micros64();
#endif //#ifndef DISABLE_DSHOT
}
/*
unlock DMA channel after a dshot send completes and no return value is expected
*/
void RCOutput::dma_unlock(void *p)
{
chSysLockFromISR();
pwm_group *group = (pwm_group *)p;
group->dshot_state = DshotState::IDLE;
if (group->dshot_waiter != nullptr) {
// tell the waiting process we've done the DMA. Note that
// dshot_waiter can be null if we have cancelled the send
chEvtSignalI(group->dshot_waiter, group->dshot_event_mask);
}
chSysUnlockFromISR();
}
#ifndef HAL_WITH_BIDIR_DSHOT
/*
DMA interrupt handler. Used to mark DMA completed for DShot
*/
void RCOutput::dma_up_irq_callback(void *p, uint32_t flags)
{
pwm_group *group = (pwm_group *)p;
chSysLockFromISR();
dmaStreamDisable(group->dma);
if (group->in_serial_dma && irq.waiter) {
// tell the waiting process we've done the DMA
chEvtSignalI(irq.waiter, serial_event_mask);
} else {
// this prevents us ever having two dshot pulses too close together
// dshot mandates a minimum pulse separation of 40us, WS2812 mandates 50us so we
// pick the higher value
chVTSetI(&group->dma_timeout, chTimeUS2I(50), dma_unlock, p);
}
chSysUnlockFromISR();
}
#endif
/*
Cancel a DMA transaction in progress
*/
void RCOutput::dma_cancel(pwm_group& group)
{
chSysLock();
dmaStreamDisable(group.dma);
#ifdef HAL_WITH_BIDIR_DSHOT
if (group.ic_dma_enabled()) {
dmaStreamDisable(group.bdshot.ic_dma[group.bdshot.curr_telem_chan]);
}
#endif
chVTResetI(&group.dma_timeout);
chEvtGetAndClearEventsI(group.dshot_event_mask);
group.dshot_state = DshotState::IDLE;
chSysUnlock();
}
/*
setup for serial output to an ESC using the given
baudrate. Assumes 1 start bit, 1 stop bit, LSB first and 8
databits. This is used for passthrough ESC configuration and
firmware flashing
While serial output is active normal output to the channel group is
suspended.
*/
bool RCOutput::serial_setup_output(uint8_t chan, uint32_t baudrate, uint16_t chanmask)
{
// account for IOMCU channels
chan -= chan_offset;
chanmask >>= chan_offset;
pwm_group *new_serial_group = nullptr;
// find the channel group
for (auto &group : pwm_group_list) {
if (group.current_mode == MODE_PWM_BRUSHED) {
// can't do serial output with brushed motors
continue;
}
if (group.ch_mask & (1U<<chan)) {
new_serial_group = &group;
for (uint8_t j=0; j<4; j++) {
if (group.chan[j] == chan) {
group.serial.chan = j;
}
}
break;
}
}
if (!new_serial_group) {
if (serial_group) {
// shutdown old group
serial_end();
}
return false;
}
// stop further dshot output before we reconfigure the DMA
serial_group = new_serial_group;
// setup the groups for serial output. We ask for a bit width of 1, which gets modified by the
// we setup all groups so they all are setup with the right polarity, and to make switching between
// channels in blheli pass-thru fast
for (auto &group : pwm_group_list) {
if (group.ch_mask & chanmask) {
if (!setup_group_DMA(group, baudrate, 10, false, DSHOT_BUFFER_LENGTH, false, 10)) {
serial_end();
return false;
}
}
}
// run the thread doing serial IO at highest priority. This is needed to ensure we don't
// lose bytes when we switch between output and input
serial_thread = chThdGetSelfX();
serial_priority = chThdGetSelfX()->realprio;
chThdSetPriority(HIGHPRIO);
// remember the bit period for serial_read_byte()
serial_group->serial.bit_time_us = 1000000UL / baudrate;
// remember the thread that set things up. This is also used to
// mark the group as doing serial output, so normal output is
// suspended
irq.waiter = chThdGetSelfX();
return true;
}
/*
fill in a DMA buffer for a serial byte, assuming 1 start bit and 1 stop bit
*/
void RCOutput::fill_DMA_buffer_byte(uint32_t *buffer, uint8_t stride, uint8_t b, uint32_t bitval)
{
const uint32_t BIT_0 = bitval;
const uint32_t BIT_1 = 0;
// start bit
buffer[0] = BIT_0;
// stop bit
buffer[9*stride] = BIT_1;
// 8 data bits
for (uint8_t i = 0; i < 8; i++) {
buffer[(1 + i) * stride] = (b & 1) ? BIT_1 : BIT_0;
b >>= 1;
}
}
/*
send one serial byte, blocking call, should be called with the DMA lock held
*/
bool RCOutput::serial_write_byte(uint8_t b)
{
chEvtGetAndClearEvents(serial_event_mask);
fill_DMA_buffer_byte(serial_group->dma_buffer+serial_group->serial.chan, 4, b, serial_group->bit_width_mul*10);
serial_group->in_serial_dma = true;
// start sending the pulses out
send_pulses_DMAR(*serial_group, 10*4*sizeof(uint32_t));
// wait for the event
eventmask_t mask = chEvtWaitAnyTimeout(serial_event_mask, chTimeMS2I(2));
serial_group->in_serial_dma = false;
return (mask & serial_event_mask) != 0;
}
/*
send a set of serial bytes, blocking call
*/
bool RCOutput::serial_write_bytes(const uint8_t *bytes, uint16_t len)
{
#ifndef DISABLE_DSHOT
if (!serial_group) {
return false;
}
serial_group->dma_handle->lock();
memset(serial_group->dma_buffer, 0, DSHOT_BUFFER_LENGTH);
while (len--) {
if (!serial_write_byte(*bytes++)) {
serial_group->dma_handle->unlock();
return false;
}
}
// add a small delay for last word of output to have completely
// finished
hal.scheduler->delay_microseconds(25);
serial_group->dma_handle->unlock();
return true;
#else
return false;
#endif // DISABLE_DSHOT
}
/*
irq handler for bit transition in serial_read_byte()
This implements a one byte soft serial reader
*/
void RCOutput::serial_bit_irq(void)
{
uint32_t now = AP_HAL::micros();
uint8_t bit = palReadLine(irq.line);
bool send_signal = false;
#if RCOU_SERIAL_TIMING_DEBUG
palWriteLine(HAL_GPIO_LINE_GPIO55, bit);
#endif
if (irq.nbits == 0 || bit == irq.last_bit) {
// start of byte, should be low
if (bit != 0) {
irq.byteval = 0x200;
send_signal = true;
} else {
irq.nbits = 1;
irq.byte_start_tick = now;
irq.bitmask = 0;
}
} else {
systime_t dt = now - irq.byte_start_tick;
uint8_t bitnum = (dt+(irq.bit_time_tick/2)) / irq.bit_time_tick;
if (bitnum > 10) {
bitnum = 10;
}
if (!bit) {
// set the bits that we've processed
irq.bitmask |= ((1U<<bitnum)-1) & ~((1U<<irq.nbits)-1);
}
irq.nbits = bitnum;
if (irq.nbits == 10) {
send_signal = true;
irq.byteval = irq.bitmask & 0x3FF;
irq.bitmask = 0;
irq.nbits = 1;
irq.byte_start_tick = now;
}
}
irq.last_bit = bit;
if (send_signal) {
chSysLockFromISR();
chVTResetI(&irq.serial_timeout);
chEvtSignalI(irq.waiter, serial_event_mask);
chSysUnlockFromISR();
}
}
/*
timeout a byte read
*/
void RCOutput::serial_byte_timeout(void *ctx)
{
chSysLockFromISR();
irq.timed_out = true;
chEvtSignalI((thread_t *)ctx, serial_event_mask);
chSysUnlockFromISR();
}
/*
read a byte from a port, using serial parameters from serial_setup_output()
*/
bool RCOutput::serial_read_byte(uint8_t &b)
{
irq.timed_out = false;
chVTSet(&irq.serial_timeout, chTimeMS2I(10), serial_byte_timeout, irq.waiter);
bool timed_out = ((chEvtWaitAny(serial_event_mask) & serial_event_mask) == 0) || irq.timed_out;
uint16_t byteval = irq.byteval;
if (timed_out) {
// we can accept a byte with a timeout if the last bit was 1
// and the start bit is set correctly
if (irq.last_bit == 0) {
return false;
}
byteval = irq.bitmask | 0x200;
}
if ((byteval & 0x201) != 0x200) {
// wrong start/stop bits
return false;
}
b = uint8_t(byteval>>1);
return true;
}
/*
read a byte from a port, using serial parameters from serial_setup_output()
*/
uint16_t RCOutput::serial_read_bytes(uint8_t *buf, uint16_t len)
{
#ifndef DISABLE_SERIAL_ESC_COMM
if (serial_group == nullptr) {
return 0;
}
pwm_group &group = *serial_group;
const ioline_t line = group.pal_lines[group.serial.chan];
uint32_t gpio_mode = PAL_MODE_INPUT_PULLUP;
uint32_t restore_mode = PAL_MODE_ALTERNATE(group.alt_functions[group.serial.chan]) | PAL_STM32_OSPEED_MID2 | PAL_STM32_OTYPE_PUSHPULL;
uint16_t i = 0;
#if RCOU_SERIAL_TIMING_DEBUG
hal.gpio->pinMode(54, 1);
hal.gpio->pinMode(55, 1);
#endif
// assume GPIO mappings for PWM outputs start at 50
palSetLineMode(line, gpio_mode);
chVTObjectInit(&irq.serial_timeout);
chEvtGetAndClearEvents(serial_event_mask);
irq.line = group.pal_lines[group.serial.chan];
irq.nbits = 0;
irq.bitmask = 0;
irq.byteval = 0;
irq.bit_time_tick = serial_group->serial.bit_time_us;
irq.last_bit = 0;
irq.waiter = chThdGetSelfX();
#if RCOU_SERIAL_TIMING_DEBUG
palWriteLine(HAL_GPIO_LINE_GPIO54, 1);
#endif
if (!((GPIO *)hal.gpio)->_attach_interrupt(line, serial_bit_irq, AP_HAL::GPIO::INTERRUPT_BOTH)) {
#if RCOU_SERIAL_TIMING_DEBUG
palWriteLine(HAL_GPIO_LINE_GPIO54, 0);
#endif
return false;
}
for (i=0; i<len; i++) {
if (!serial_read_byte(buf[i])) {
break;
}
}
((GPIO *)hal.gpio)->_attach_interrupt(line, nullptr, 0);
irq.waiter = nullptr;
palSetLineMode(line, restore_mode);
#if RCOU_SERIAL_TIMING_DEBUG
palWriteLine(HAL_GPIO_LINE_GPIO54, 0);
#endif
return i;
#else
return false;
#endif //#ifndef DISABLE_SERIAL_ESC_COMM
}
/*
end serial output
*/
void RCOutput::serial_end(void)
{
#ifndef DISABLE_SERIAL_ESC_COMM
if (serial_group) {
if (serial_thread == chThdGetSelfX()) {
chThdSetPriority(serial_priority);
serial_thread = nullptr;
}
irq.waiter = nullptr;
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
pwm_group &group = pwm_group_list[i];
// restore normal output
if (group.pwm_started) {
pwmStop(group.pwm_drv);
group.pwm_started = false;
}
set_group_mode(group);
set_freq_group(group);
}
}
serial_group = nullptr;
#endif //#ifndef DISABLE_SERIAL_ESC_COMM
}
/*
get safety switch state for Util.cpp
*/
AP_HAL::Util::safety_state RCOutput::_safety_switch_state(void)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
safety_state = iomcu.get_safety_switch_state();
}
#endif
if (!hal.util->was_watchdog_reset()) {
hal.util->persistent_data.safety_state = safety_state;
}
return safety_state;
}
/*
force the safety switch on, disabling PWM output from the IO board
*/
bool RCOutput::force_safety_on(void)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
return iomcu.force_safety_on();
}
return false;
#else
safety_state = AP_HAL::Util::SAFETY_DISARMED;
return true;
#endif
}
/*
force the safety switch off, enabling PWM output from the IO board
*/
void RCOutput::force_safety_off(void)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.force_safety_off();
}
#else
safety_state = AP_HAL::Util::SAFETY_ARMED;
#endif
}
/*
set PWM to send to a set of channels when the safety switch is
in the safe state
*/
void RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.set_safety_pwm(chmask, period_us);
}
#endif
for (uint8_t i=0; i<16; i++) {
if (chmask & (1U<<i)) {
safe_pwm[i] = period_us;
}
}
}
/*
update safety state
*/
void RCOutput::safety_update(void)
{
uint32_t now = AP_HAL::millis();
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton();
if (boardconfig) {
// remember mask of channels to allow with safety on
safety_mask = boardconfig->get_safety_mask();
}
#ifdef HAL_GPIO_PIN_SAFETY_IN
// handle safety button
bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_IN);
if (safety_pressed) {
AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton();
if (safety_press_count < 255) {
safety_press_count++;
}
if (brdconfig && brdconfig->safety_button_handle_pressed(safety_press_count)) {
if (safety_state ==AP_HAL::Util::SAFETY_ARMED) {
safety_state = AP_HAL::Util::SAFETY_DISARMED;
} else {
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
}
} else {
safety_press_count = 0;
}
#elif HAL_WITH_IO_MCU
safety_state = _safety_switch_state();
iomcu.set_safety_mask(safety_mask);
#endif
#ifdef HAL_GPIO_PIN_LED_SAFETY
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = safety_state==AP_HAL::Util::SAFETY_DISARMED?0x5500:0xFFFF;
palWriteLine(HAL_GPIO_PIN_LED_SAFETY, (led_pattern & (1U << led_counter))?0:1);
#endif
}
/*
set PWM to send to a set of channels if the FMU firmware dies
*/
void RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.set_failsafe_pwm(chmask, period_us);
}
#endif
}
/*
true when the output mode is of type dshot
*/
bool RCOutput::is_dshot_protocol(const enum output_mode mode)
{
switch (mode) {
case MODE_PWM_DSHOT150:
case MODE_PWM_DSHOT300:
case MODE_PWM_DSHOT600:
case MODE_PWM_DSHOT1200:
return true;
default:
return false;
}
}
/*
returns the bitrate in Hz of the given output_mode
*/
uint32_t RCOutput::protocol_bitrate(const enum output_mode mode)
{
switch (mode) {
case MODE_PWM_DSHOT150:
return 150000;
case MODE_PWM_DSHOT300:
return 300000;
case MODE_PWM_DSHOT600:
return 600000;
case MODE_PWM_DSHOT1200:
return 1200000;
case MODE_NEOPIXEL:
return 800000;
case MODE_PROFILED:
return 1500000; // experiment winding this up 3000000 max from data sheet
default:
// use 1 to prevent a possible divide-by-zero
return 1;
}
}
/*
setup serial led output for a given channel number, with
the given max number of LEDs in the chain.
*/
bool RCOutput::set_serial_led_num_LEDs(const uint16_t chan, uint8_t num_leds, output_mode mode, uint16_t clock_mask)
{
if (!_initialised) {
return false;
}
uint8_t i = 0;
pwm_group *grp = find_chan(chan, i);
if (!grp) {
return false;
}
// we must hold the LED mutex while resizing the array
WITH_SEMAPHORE(grp->serial_led_mutex);
// if already allocated a different size then return
if ((grp->serial_nleds > 0 && num_leds != grp->serial_nleds)
|| (mode != MODE_NEOPIXEL && mode != MODE_PROFILED)) {
return false;
}
// if already allocated this channel
if (grp->serial_nleds > 0 && num_leds == grp->serial_nleds
&& grp->serial_led_data[i] != nullptr) {
return false;
}
switch (mode) {
case MODE_NEOPIXEL: {
num_leds = MAX(num_leds, grp->serial_nleds);
break;
}
case MODE_PROFILED: {
// ProfiLED requires two dummy LED's to mark end of transmission
num_leds = MAX(num_leds + 2, grp->serial_nleds);
// Enable any clock channels in the same group
grp->clock_mask = 0;
for (uint8_t j = 0; j < 4; j++) {
if ((clock_mask & (1U<<(grp->chan[j] + chan_offset))) != 0) {
grp->clock_mask |= 1U<<j;
}
}
break;
}
default:
return false;
}
// allocate the data storage array, since the group num_leds is changing
/// we need to do all that are allocated
if (grp->serial_nleds != num_leds || grp->serial_led_data[i] == nullptr) {
for (uint8_t j = 0; j < 4; j++) {
if (grp->serial_led_data[j] != nullptr) {
delete[] grp->serial_led_data[j];
grp->serial_led_data[j] = nullptr;
if (num_leds > 0) {
grp->serial_led_data[j] = new SerialLed[num_leds];
if (grp->serial_led_data[j] == nullptr) {
num_leds = 0;
}
}
}
}
if (num_leds > 0 && grp->serial_led_data[i] == nullptr) {
grp->serial_led_data[i] = new SerialLed[num_leds];
if (grp->serial_led_data[i] == nullptr) {
num_leds = 0;
}
}
grp->serial_nleds = num_leds;
}
// at this point the group led data is all setup but the dma buffer still needs to be resized
set_output_mode(1U<<chan, mode);
return grp->current_mode == mode;
}
#pragma GCC push_options
#pragma GCC optimize("O2")
// Fill the group DMA buffer with data to be output
void RCOutput::fill_DMA_buffer_serial_led(pwm_group& group)
{
memset(group.dma_buffer, 0, group.dma_buffer_len);
for (uint8_t j = 0; j < 4; j++) {
if (group.serial_led_data[j] == nullptr) {
if (group.current_mode == MODE_PROFILED && (group.clock_mask & 1U<<j) != 0) {
for (uint8_t i = 0; i < group.serial_nleds; i++) {
_set_profiled_clock(&group, j, i);
}
}
continue;
}
for (uint8_t i = 0; i < group.serial_nleds; i++) {
const SerialLed& led = group.serial_led_data[j][i];
switch (group.current_mode) {
case MODE_NEOPIXEL:
_set_neopixel_rgb_data(&group, j, i, led.red, led.green, led.blue);
break;
case MODE_PROFILED: {
if (i < group.serial_nleds - 2) {
_set_profiled_rgb_data(&group, j, i, led.red, led.green, led.blue);
} else {
_set_profiled_blank_frame(&group, j, i);
}
break;
}
default:
break;
}
}
}
}
/*
setup neopixel (WS2812B) output data for a given output channel
and a LED number. LED -1 is all LEDs
*/
void RCOutput::_set_neopixel_rgb_data(pwm_group *grp, uint8_t idx, uint8_t led, uint8_t red, uint8_t green, uint8_t blue)
{
const uint8_t pad_start_bits = 1;
const uint8_t neopixel_bit_length = 24;
const uint8_t stride = 4;
uint32_t *buf = grp->dma_buffer + (led * neopixel_bit_length + pad_start_bits) * stride + idx;
uint32_t bits = (green<<16) | (red<<8) | blue;
const uint32_t BIT_0 = 7 * grp->bit_width_mul;
const uint32_t BIT_1 = 14 * grp->bit_width_mul;
for (uint16_t b=0; b < 24; b++) {
buf[b * stride] = (bits & 0x800000) ? BIT_1 : BIT_0;
bits <<= 1;
}
}
/*
ProfiLED frame for a given output channel
channel is active high and bits inverted to get clock rising edge away from data rising edge
*/
void RCOutput::_set_profiled_rgb_data(pwm_group *grp, uint8_t idx, uint8_t led, uint8_t red, uint8_t green, uint8_t blue)
{
const uint8_t pad_start_bits = 1;
const uint8_t bit_length = 25;
const uint8_t stride = 4;
uint32_t *buf = grp->dma_buffer + (led * bit_length + pad_start_bits) * stride + idx;
uint32_t bits = 0x1000000 | (blue<<16) | (red<<8) | green;
const uint32_t BIT_1 = 14 * grp->bit_width_mul;
for (uint16_t b=0; b < bit_length; b++) {
buf[b * stride] = (bits & 0x1000000) ? 0 : BIT_1;
bits <<= 1;
}
}
/*
ProfiLED blank frame for a given output channel
channel is active high and bits inverted to get clock rising edge away from data rising edge
*/
void RCOutput::_set_profiled_blank_frame(pwm_group *grp, uint8_t idx, uint8_t led)
{
const uint8_t pad_start_bits = 1;
const uint8_t bit_length = 25;
const uint8_t stride = 4;
uint32_t *buf = grp->dma_buffer + (led * bit_length + pad_start_bits) * stride + idx;
const uint32_t BIT_1 = 14 * grp->bit_width_mul;
for (uint16_t b=0; b < bit_length; b++) {
buf[b * stride] = BIT_1;
}
}
/*
setup ProfiLED clock frame for a given output channel
*/
void RCOutput::_set_profiled_clock(pwm_group *grp, uint8_t idx, uint8_t led)
{
const uint8_t pad_start_bits = 1;
const uint8_t bit_length = 25;
const uint8_t stride = 4;
uint32_t *buf = grp->dma_buffer + (led * bit_length + pad_start_bits) * stride + idx;
const uint32_t BIT_1 = 7 * grp->bit_width_mul;
for (uint16_t b=0; b < bit_length; b++) {
buf[b * stride] = BIT_1;
}
}
#pragma GCC pop_options
/*
setup serial LED output data for a given output channel
and a LED number. LED -1 is all LEDs
*/
void RCOutput::set_serial_led_rgb_data(const uint16_t chan, int8_t led, uint8_t red, uint8_t green, uint8_t blue)
{
if (!_initialised) {
return;
}
uint8_t i = 0;
pwm_group *grp = find_chan(chan, i);
if (!grp) {
return;
}
WITH_SEMAPHORE(grp->serial_led_mutex);
if (grp->serial_nleds == 0 || led >= grp->serial_nleds
|| (grp->current_mode != MODE_NEOPIXEL && grp->current_mode != MODE_PROFILED)) {
return;
}
if (led == -1) {
grp->prepared_send = true;
for (uint8_t n=0; n<grp->serial_nleds; n++) {
serial_led_set_single_rgb_data(*grp, i, n, red, green, blue);
}
return;
}
// if not ouput clock and trailing frames, run through all LED's to do it now
if (!grp->prepared_send) {
grp->prepared_send = true;
for (uint8_t n=0; n<grp->serial_nleds; n++) {
serial_led_set_single_rgb_data(*grp, i, n, 0, 0, 0);
}
}
serial_led_set_single_rgb_data(*grp, i, uint8_t(led), red, green, blue);
}
/*
setup serial LED output data for a given output channel
and a LED number. LED -1 is all LEDs
*/
void RCOutput::serial_led_set_single_rgb_data(pwm_group& group, uint8_t idx, uint8_t led, uint8_t red, uint8_t green, uint8_t blue)
{
switch (group.current_mode) {
case MODE_PROFILED:
case MODE_NEOPIXEL:
group.serial_led_data[idx][led].red = red;
group.serial_led_data[idx][led].green = green;
group.serial_led_data[idx][led].blue = blue;
break;
default:
break;
}
}
/*
trigger send of serial led data for one group
*/
void RCOutput::serial_led_send(const uint16_t chan)
{
if (!_initialised) {
return;
}
uint8_t i;
pwm_group *grp = find_chan(chan, i);
if (!grp) {
return;
}
WITH_SEMAPHORE(grp->serial_led_mutex);
if (grp->serial_nleds == 0 || (grp->current_mode != MODE_NEOPIXEL && grp->current_mode != MODE_PROFILED)) {
return;
}
if (grp->prepared_send) {
grp->serial_led_pending = true;
serial_led_pending = true;
}
}
#endif // HAL_USE_PWM