ardupilot/libraries/AP_HAL_ESP32/AnalogIn.cpp

370 lines
10 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Charles Villard
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL_ESP32/Semaphores.h>
#include <stdlib.h>
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "esp_adc_cal.h"
#include "soc/adc_channel.h"
#if HAL_USE_ADC == TRUE && !defined(HAL_DISABLE_ADC_DRIVER)
#include "AnalogIn.h"
#ifndef ESP32_ADC_MAVLINK_DEBUG
// this allows the first 6 analog channels to be reported by mavlink for debugging purposes
#define ESP32_ADC_MAVLINK_DEBUG 0
#endif
#include <GCS_MAVLink/GCS_MAVLink.h>
#define ANALOGIN_DEBUGGING 0
// base voltage scaling for 12 bit 3.3V ADC
#define VOLTAGE_SCALING (3.3f/4096.0f)
#if ANALOGIN_DEBUGGING
# define Debug(fmt, args ...) do {printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
#else
# define Debug(fmt, args ...)
#endif
// we are limited to using adc1, and it supports 8 channels max, on gpio, in this order:
// ADC1_CH0=D36,ADC1_CH1=D37,ADC1_CH2=D38,ADC1_CH3=D39,ADC1_CH4=D32,ADC1_CH5=D33,ADC1_CH6=D34,ADC1_CH7=D35
// this driver will only configure the ADCs from a subset of these that the board exposes on pins.
extern const AP_HAL::HAL &hal;
using namespace ESP32;
/*
scaling table between ADC count and actual input voltage, to account
for voltage dividers on the board.
*/
const AnalogIn::pin_info AnalogIn::pin_config[] = HAL_ESP32_ADC_PINS;
#define ADC_GRP1_NUM_CHANNELS ARRAY_SIZE(AnalogIn::pin_config)
#define DEFAULT_VREF 1100 //Use adc2_vref_to_gpio() to obtain a better estimate
#define NO_OF_SAMPLES 256 //Multisampling
static const adc_atten_t atten = ADC_ATTEN_DB_11;
//ardupin is the ardupilot assigned number, starting from 1-8(max)
// 'pin' and _pin is a macro like 'ADC1_GPIO35_CHANNEL' from board config .h
AnalogSource::AnalogSource(int16_t ardupin,int16_t pin,float scaler, float initial_value, uint8_t unit) :
_unit(unit),
_ardupin(ardupin),
_pin(pin),
_scaler(scaler),
_value(initial_value),
_latest_value(initial_value),
_sum_count(0),
_sum_value(0)
{
printf("AnalogIn: adding ardupin:%d-> which is adc1_offset:%d\n", _ardupin,_pin);
// init the pin now if possible, otherwise doo it later from set_pin
if ( _ardupin != ANALOG_INPUT_NONE ) {
// dertermine actial gpio from adc offset and configure it
gpio_num_t gpio;
//Configure ADC
if (unit == 1) {
adc1_config_channel_atten((adc1_channel_t)_pin, atten);
adc1_pad_get_io_num((adc1_channel_t)_pin, &gpio);
} else {
adc2_config_channel_atten((adc2_channel_t)_pin, atten);
}
esp_adc_cal_characteristics_t adc_chars;
esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, &adc_chars);
printf("AnalogIn: determined actual gpio as: %d\n", gpio);
_gpio = gpio;// save it for later
}
}
float AnalogSource::read_average()
{
if ( _ardupin == ANALOG_INPUT_NONE ) {
return 0.0f;
}
WITH_SEMAPHORE(_semaphore);
if (_sum_count == 0) {
uint32_t adc_reading = 0;
//Multisampling
for (int i = 0; i < NO_OF_SAMPLES; i++) {
if (_unit == 1) {
adc_reading += adc1_get_raw((adc1_channel_t)_pin);
} else {
int raw;
adc2_get_raw((adc2_channel_t)_pin, ADC_WIDTH_BIT_12, &raw);
adc_reading += raw;
}
}
adc_reading /= NO_OF_SAMPLES;
return adc_reading;
}
_value = _sum_value / _sum_count;
_sum_value = 0;
_sum_count = 0;
return _value;
}
float AnalogSource::read_latest()
{
return _latest_value;
}
//_scaler scaling from ADC count to Volts
/*
return voltage in Volts
*/
float AnalogSource::voltage_average()
{
return _scaler * read_average();
}
/*
return voltage in Volts
*/
float AnalogSource::voltage_latest()
{
return _scaler * read_latest();
}
float AnalogSource::voltage_average_ratiometric()
{
return _scaler * read_latest();
}
// ardupin
bool AnalogSource::set_pin(uint8_t ardupin)
{
if (_ardupin == ardupin) {
return true;
}
int8_t pinconfig_offset = AnalogIn::find_pinconfig(ardupin);
if (pinconfig_offset == -1 ) {
DEV_PRINTF("AnalogIn: sorry set_pin() can't determine ADC1 offset from ardupin : %d \n",ardupin);
return false;
}
int16_t newgpioAdcPin = AnalogIn::pin_config[(uint8_t)pinconfig_offset].channel;
float newscaler = AnalogIn::pin_config[(uint8_t)pinconfig_offset].scaling;
if (_pin == newgpioAdcPin) {
return true;
}
WITH_SEMAPHORE(_semaphore);
// init the target pin now if possible
if ( ardupin != ANALOG_INPUT_NONE ) {
gpio_num_t gpio; // new gpio
//Configure ADC
if (_unit == 1) {
adc1_config_channel_atten((adc1_channel_t)newgpioAdcPin, atten);
adc1_pad_get_io_num((adc1_channel_t)newgpioAdcPin, &gpio);
} else {
adc2_config_channel_atten((adc2_channel_t)newgpioAdcPin, atten);
}
esp_adc_cal_characteristics_t adc_chars;
esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, &adc_chars);
printf("AnalogIn: Adding gpio on: %d\n", gpio);
DEV_PRINTF("AnalogIn: set_pin() FROM (ardupin:%d adc1_offset:%d gpio:%d) TO (ardupin:%d adc1_offset:%d gpio:%d)\n", \
_ardupin,_pin,_gpio,ardupin,newgpioAdcPin,gpio);
_pin = newgpioAdcPin;
_ardupin = ardupin;
_gpio = gpio;
_scaler = newscaler;
}
_sum_value = 0;
_sum_count = 0;
_latest_value = 0;
_value = 0;
return true;
}
/*
apply a reading in ADC counts
*/
void AnalogSource::_add_value()
{
if ( _ardupin == ANALOG_INPUT_NONE ) {
return;
}
WITH_SEMAPHORE(_semaphore);
int value = 0;
if (_unit == 1) {
value = adc1_get_raw((adc1_channel_t)_pin);
} else {
adc2_get_raw((adc2_channel_t)_pin, ADC_WIDTH_BIT_12, &value);
}
_latest_value = value;
_sum_value += value;
_sum_count++;
if (_sum_count == 254) {
_sum_value /= 2;
_sum_count /= 2;
}
}
static void check_efuse()
{
//Check TP is burned into eFuse
if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) {
printf("AnalogIn: eFuse Two Point: Supported\n");
} else {
printf("AnalogIn: eFuse Two Point: NOT supported\n");
}
//Check Vref is burned into eFuse
if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_VREF) == ESP_OK) {
printf("AnalogIn: eFuse Vref: Supported\n");
} else {
printf("AnalogIn: eFuse Vref: NOT supported\n");
}
}
/*
setup adc peripheral to capture samples with DMA into a buffer
*/
void AnalogIn::init()
{
check_efuse();
adc1_config_width(ADC_WIDTH_BIT_12);
}
/*
called at 1kHz
*/
void AnalogIn::_timer_tick()
{
for (uint8_t j = 0; j < ANALOG_MAX_CHANNELS; j++) {
ESP32::AnalogSource *c = _channels[j];
if (c != nullptr) {
// add a value
//c->_add_value();
}
}
#if ESP32_ADC_MAVLINK_DEBUG
static uint8_t count;
if (AP_HAL::millis() > 5000 && count++ == 10) {
count = 0;
uint16_t adc[6] {};
uint8_t n = ADC_GRP1_NUM_CHANNELS;
if (n > 6) {
n = 6;
}
for (uint8_t i = 0; i < n; i++) {
adc[i] = buf_adc[i];
}
mavlink_msg_ap_adc_send(MAVLINK_COMM_0, adc[0], adc[1], adc[2], adc[3], adc[4],
adc[5]);
}
#endif
}
//positive array index (zero is ok), or -1 on error
int8_t AnalogIn::find_pinconfig(int16_t ardupin)
{
// from ardupin, lookup which adc gpio that is..
for (uint8_t j = 0; j < ADC_GRP1_NUM_CHANNELS; j++) {
if (pin_config[j].ardupin == ardupin) {
return j;
}
}
// can't find a match in definitons
return -1;
}
//
AP_HAL::AnalogSource *AnalogIn::channel(int16_t ardupin)
{
int8_t pinconfig_offset = find_pinconfig(ardupin);
int16_t gpioAdcPin = -1;
float scaler = -1;
if ((ardupin != ANALOG_INPUT_NONE) && (pinconfig_offset == -1 )) {
DEV_PRINTF("AnalogIn: sorry channel() can't determine ADC1 offset from ardupin : %d \n",ardupin);
ardupin = ANALOG_INPUT_NONE; // default it to this not terrible value and allow to continue
}
// although ANALOG_INPUT_NONE=255 is not a valid pin, we let it through here as
// a special case, so that it can be changed with set_pin(..) later.
if (ardupin != ANALOG_INPUT_NONE) {
gpioAdcPin = pin_config[(uint8_t)pinconfig_offset].channel;
scaler = pin_config[(uint8_t)pinconfig_offset].scaling;
}
for (uint8_t j = 0; j < ANALOG_MAX_CHANNELS; j++) {
if (_channels[j] == nullptr) {
_channels[j] = new AnalogSource(ardupin,gpioAdcPin, scaler,0.0f,1);
if (ardupin != ANALOG_INPUT_NONE) {
DEV_PRINTF("AnalogIn: channel:%d attached to ardupin:%d at adc1_offset:%d on gpio:%d\n",\
j,ardupin, gpioAdcPin, _channels[j]->_gpio);
}
if (ardupin == ANALOG_INPUT_NONE) {
DEV_PRINTF("AnalogIn: channel:%d created but using delayed adc and gpio pin configuration\n",j );
}
return _channels[j];
}
}
DEV_PRINTF("AnalogIn: out of channels\n");
return nullptr;
}
#endif // HAL_USE_ADC