mirror of https://github.com/ArduPilot/ardupilot
1677 lines
45 KiB
C++
1677 lines
45 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* NavEKF based AHRS (Attitude Heading Reference System) interface for
|
|
* ArduPilot
|
|
*
|
|
*/
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_AHRS.h"
|
|
#include "AP_AHRS_View.h"
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <AP_Module/AP_Module.h>
|
|
|
|
#if AP_AHRS_NAVEKF_AVAILABLE
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// constructor
|
|
AP_AHRS_NavEKF::AP_AHRS_NavEKF(NavEKF2 &_EKF2,
|
|
NavEKF3 &_EKF3,
|
|
Flags flags) :
|
|
AP_AHRS_DCM(),
|
|
EKF2(_EKF2),
|
|
EKF3(_EKF3),
|
|
_ekf_flags(flags)
|
|
{
|
|
_dcm_matrix.identity();
|
|
}
|
|
|
|
// return the smoothed gyro vector corrected for drift
|
|
const Vector3f &AP_AHRS_NavEKF::get_gyro(void) const
|
|
{
|
|
if (!active_EKF_type()) {
|
|
return AP_AHRS_DCM::get_gyro();
|
|
}
|
|
return _gyro_estimate;
|
|
}
|
|
|
|
const Matrix3f &AP_AHRS_NavEKF::get_rotation_body_to_ned(void) const
|
|
{
|
|
if (!active_EKF_type()) {
|
|
return AP_AHRS_DCM::get_rotation_body_to_ned();
|
|
}
|
|
return _dcm_matrix;
|
|
}
|
|
|
|
const Vector3f &AP_AHRS_NavEKF::get_gyro_drift(void) const
|
|
{
|
|
if (!active_EKF_type()) {
|
|
return AP_AHRS_DCM::get_gyro_drift();
|
|
}
|
|
return _gyro_drift;
|
|
}
|
|
|
|
// reset the current gyro drift estimate
|
|
// should be called if gyro offsets are recalculated
|
|
void AP_AHRS_NavEKF::reset_gyro_drift(void)
|
|
{
|
|
// update DCM
|
|
AP_AHRS_DCM::reset_gyro_drift();
|
|
|
|
// reset the EKF gyro bias states
|
|
EKF2.resetGyroBias();
|
|
EKF3.resetGyroBias();
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::update(bool skip_ins_update)
|
|
{
|
|
// drop back to normal priority if we were boosted by the INS
|
|
// calling delay_microseconds_boost()
|
|
hal.scheduler->boost_end();
|
|
|
|
// EKF1 is no longer supported - handle case where it is selected
|
|
if (_ekf_type == 1) {
|
|
_ekf_type.set(2);
|
|
}
|
|
|
|
|
|
update_DCM(skip_ins_update);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
update_SITL();
|
|
#endif
|
|
|
|
if (_ekf_type == 2) {
|
|
// if EK2 is primary then run EKF2 first to give it CPU
|
|
// priority
|
|
update_EKF2();
|
|
update_EKF3();
|
|
} else {
|
|
// otherwise run EKF3 first
|
|
update_EKF3();
|
|
update_EKF2();
|
|
}
|
|
|
|
#if AP_MODULE_SUPPORTED
|
|
// call AHRS_update hook if any
|
|
AP_Module::call_hook_AHRS_update(*this);
|
|
#endif
|
|
|
|
// push gyros if optical flow present
|
|
if (hal.opticalflow) {
|
|
const Vector3f &exported_gyro_bias = get_gyro_drift();
|
|
hal.opticalflow->push_gyro_bias(exported_gyro_bias.x, exported_gyro_bias.y);
|
|
}
|
|
|
|
if (_view != nullptr) {
|
|
// update optional alternative attitude view
|
|
_view->update(skip_ins_update);
|
|
}
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::update_DCM(bool skip_ins_update)
|
|
{
|
|
// we need to restore the old DCM attitude values as these are
|
|
// used internally in DCM to calculate error values for gyro drift
|
|
// correction
|
|
roll = _dcm_attitude.x;
|
|
pitch = _dcm_attitude.y;
|
|
yaw = _dcm_attitude.z;
|
|
update_cd_values();
|
|
|
|
AP_AHRS_DCM::update(skip_ins_update);
|
|
|
|
// keep DCM attitude available for get_secondary_attitude()
|
|
_dcm_attitude(roll, pitch, yaw);
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::update_EKF2(void)
|
|
{
|
|
if (!_ekf2_started) {
|
|
// wait 1 second for DCM to output a valid tilt error estimate
|
|
if (start_time_ms == 0) {
|
|
start_time_ms = AP_HAL::millis();
|
|
}
|
|
if (AP_HAL::millis() - start_time_ms > startup_delay_ms || _force_ekf) {
|
|
_ekf2_started = EKF2.InitialiseFilter();
|
|
if (_force_ekf) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (_ekf2_started) {
|
|
EKF2.UpdateFilter();
|
|
if (active_EKF_type() == EKF_TYPE2) {
|
|
Vector3f eulers;
|
|
EKF2.getRotationBodyToNED(_dcm_matrix);
|
|
EKF2.getEulerAngles(-1,eulers);
|
|
roll = eulers.x;
|
|
pitch = eulers.y;
|
|
yaw = eulers.z;
|
|
|
|
update_cd_values();
|
|
update_trig();
|
|
|
|
// Use the primary EKF to select the primary gyro
|
|
const int8_t primary_imu = EKF2.getPrimaryCoreIMUIndex();
|
|
|
|
const AP_InertialSensor &_ins = AP::ins();
|
|
|
|
// get gyro bias for primary EKF and change sign to give gyro drift
|
|
// Note sign convention used by EKF is bias = measurement - truth
|
|
_gyro_drift.zero();
|
|
EKF2.getGyroBias(-1,_gyro_drift);
|
|
_gyro_drift = -_gyro_drift;
|
|
|
|
// calculate corrected gyro estimate for get_gyro()
|
|
_gyro_estimate.zero();
|
|
if (primary_imu == -1) {
|
|
// the primary IMU is undefined so use an uncorrected default value from the INS library
|
|
_gyro_estimate = _ins.get_gyro();
|
|
} else {
|
|
// use the same IMU as the primary EKF and correct for gyro drift
|
|
_gyro_estimate = _ins.get_gyro(primary_imu) + _gyro_drift;
|
|
}
|
|
|
|
// get z accel bias estimate from active EKF (this is usually for the primary IMU)
|
|
float abias = 0;
|
|
EKF2.getAccelZBias(-1,abias);
|
|
|
|
// This EKF is currently using primary_imu, and abias applies to only that IMU
|
|
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
|
|
Vector3f accel = _ins.get_accel(i);
|
|
if (i == primary_imu) {
|
|
accel.z -= abias;
|
|
}
|
|
if (_ins.get_accel_health(i)) {
|
|
_accel_ef_ekf[i] = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * accel;
|
|
}
|
|
}
|
|
_accel_ef_ekf_blended = _accel_ef_ekf[primary_imu>=0?primary_imu:_ins.get_primary_accel()];
|
|
nav_filter_status filt_state;
|
|
EKF2.getFilterStatus(-1,filt_state);
|
|
AP_Notify::flags.gps_fusion = filt_state.flags.using_gps; // Drives AP_Notify flag for usable GPS.
|
|
AP_Notify::flags.gps_glitching = filt_state.flags.gps_glitching;
|
|
AP_Notify::flags.have_pos_abs = filt_state.flags.horiz_pos_abs;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void AP_AHRS_NavEKF::update_EKF3(void)
|
|
{
|
|
if (!_ekf3_started) {
|
|
// wait 1 second for DCM to output a valid tilt error estimate
|
|
if (start_time_ms == 0) {
|
|
start_time_ms = AP_HAL::millis();
|
|
}
|
|
if (AP_HAL::millis() - start_time_ms > startup_delay_ms || _force_ekf) {
|
|
_ekf3_started = EKF3.InitialiseFilter();
|
|
if (_force_ekf) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (_ekf3_started) {
|
|
EKF3.UpdateFilter();
|
|
if (active_EKF_type() == EKF_TYPE3) {
|
|
Vector3f eulers;
|
|
EKF3.getRotationBodyToNED(_dcm_matrix);
|
|
EKF3.getEulerAngles(-1,eulers);
|
|
roll = eulers.x;
|
|
pitch = eulers.y;
|
|
yaw = eulers.z;
|
|
|
|
update_cd_values();
|
|
update_trig();
|
|
|
|
const AP_InertialSensor &_ins = AP::ins();
|
|
|
|
// Use the primary EKF to select the primary gyro
|
|
const int8_t primary_imu = EKF3.getPrimaryCoreIMUIndex();
|
|
|
|
// get gyro bias for primary EKF and change sign to give gyro drift
|
|
// Note sign convention used by EKF is bias = measurement - truth
|
|
_gyro_drift.zero();
|
|
EKF3.getGyroBias(-1,_gyro_drift);
|
|
_gyro_drift = -_gyro_drift;
|
|
|
|
// calculate corrected gyro estimate for get_gyro()
|
|
_gyro_estimate.zero();
|
|
if (primary_imu == -1) {
|
|
// the primary IMU is undefined so use an uncorrected default value from the INS library
|
|
_gyro_estimate = _ins.get_gyro();
|
|
} else {
|
|
// use the same IMU as the primary EKF and correct for gyro drift
|
|
_gyro_estimate = _ins.get_gyro(primary_imu) + _gyro_drift;
|
|
}
|
|
|
|
// get 3-axis accel bias festimates for active EKF (this is usually for the primary IMU)
|
|
Vector3f abias;
|
|
EKF3.getAccelBias(-1,abias);
|
|
|
|
// This EKF uses the primary IMU
|
|
// Eventually we will run a separate instance of the EKF for each IMU and do the selection and blending of EKF outputs upstream
|
|
// update _accel_ef_ekf
|
|
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
|
|
Vector3f accel = _ins.get_accel(i);
|
|
if (i==_ins.get_primary_accel()) {
|
|
accel -= abias;
|
|
}
|
|
if (_ins.get_accel_health(i)) {
|
|
_accel_ef_ekf[i] = _dcm_matrix * accel;
|
|
}
|
|
}
|
|
_accel_ef_ekf_blended = _accel_ef_ekf[_ins.get_primary_accel()];
|
|
nav_filter_status filt_state;
|
|
EKF3.getFilterStatus(-1,filt_state);
|
|
AP_Notify::flags.gps_fusion = filt_state.flags.using_gps; // Drives AP_Notify flag for usable GPS.
|
|
AP_Notify::flags.gps_glitching = filt_state.flags.gps_glitching;
|
|
AP_Notify::flags.have_pos_abs = filt_state.flags.horiz_pos_abs;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
void AP_AHRS_NavEKF::update_SITL(void)
|
|
{
|
|
if (_sitl == nullptr) {
|
|
_sitl = AP::sitl();
|
|
if (_sitl == nullptr) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
|
|
if (active_EKF_type() == EKF_TYPE_SITL) {
|
|
roll = radians(fdm.rollDeg);
|
|
pitch = radians(fdm.pitchDeg);
|
|
yaw = radians(fdm.yawDeg);
|
|
|
|
fdm.quaternion.rotation_matrix(_dcm_matrix);
|
|
|
|
update_cd_values();
|
|
update_trig();
|
|
|
|
_gyro_drift.zero();
|
|
|
|
_gyro_estimate = Vector3f(radians(fdm.rollRate),
|
|
radians(fdm.pitchRate),
|
|
radians(fdm.yawRate));
|
|
|
|
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
|
const Vector3f accel(fdm.xAccel,
|
|
fdm.yAccel,
|
|
fdm.zAccel);
|
|
_accel_ef_ekf[i] = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * accel;
|
|
}
|
|
_accel_ef_ekf_blended = _accel_ef_ekf[0];
|
|
|
|
}
|
|
|
|
if (_sitl->odom_enable) {
|
|
// use SITL states to write body frame odometry data at 20Hz
|
|
uint32_t timeStamp_ms = AP_HAL::millis();
|
|
if (timeStamp_ms - _last_body_odm_update_ms > 50) {
|
|
const float quality = 100.0f;
|
|
const Vector3f posOffset(0.0f, 0.0f, 0.0f);
|
|
const float delTime = 0.001f * (timeStamp_ms - _last_body_odm_update_ms);
|
|
_last_body_odm_update_ms = timeStamp_ms;
|
|
timeStamp_ms -= (timeStamp_ms - _last_body_odm_update_ms)/2; // correct for first order hold average delay
|
|
Vector3f delAng(radians(fdm.rollRate),
|
|
radians(fdm.pitchRate),
|
|
radians(fdm.yawRate));
|
|
delAng *= delTime;
|
|
// rotate earth velocity into body frame and calculate delta position
|
|
Matrix3f Tbn;
|
|
Tbn.from_euler(radians(fdm.rollDeg),radians(fdm.pitchDeg),radians(fdm.yawDeg));
|
|
const Vector3f earth_vel(fdm.speedN,fdm.speedE,fdm.speedD);
|
|
const Vector3f delPos = Tbn.transposed() * (earth_vel * delTime);
|
|
// write to EKF
|
|
EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, posOffset);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_HAL_BOARD
|
|
|
|
// accelerometer values in the earth frame in m/s/s
|
|
const Vector3f &AP_AHRS_NavEKF::get_accel_ef(uint8_t i) const
|
|
{
|
|
if (active_EKF_type() == EKF_TYPE_NONE) {
|
|
return AP_AHRS_DCM::get_accel_ef(i);
|
|
}
|
|
return _accel_ef_ekf[i];
|
|
}
|
|
|
|
// blended accelerometer values in the earth frame in m/s/s
|
|
const Vector3f &AP_AHRS_NavEKF::get_accel_ef_blended(void) const
|
|
{
|
|
if (active_EKF_type() == EKF_TYPE_NONE) {
|
|
return AP_AHRS_DCM::get_accel_ef_blended();
|
|
}
|
|
return _accel_ef_ekf_blended;
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::reset(bool recover_eulers)
|
|
{
|
|
AP_AHRS_DCM::reset(recover_eulers);
|
|
_dcm_attitude(roll, pitch, yaw);
|
|
if (_ekf2_started) {
|
|
_ekf2_started = EKF2.InitialiseFilter();
|
|
}
|
|
if (_ekf3_started) {
|
|
_ekf3_started = EKF3.InitialiseFilter();
|
|
}
|
|
}
|
|
|
|
// reset the current attitude, used on new IMU calibration
|
|
void AP_AHRS_NavEKF::reset_attitude(const float &_roll, const float &_pitch, const float &_yaw)
|
|
{
|
|
AP_AHRS_DCM::reset_attitude(_roll, _pitch, _yaw);
|
|
_dcm_attitude(roll, pitch, yaw);
|
|
if (_ekf2_started) {
|
|
_ekf2_started = EKF2.InitialiseFilter();
|
|
}
|
|
if (_ekf3_started) {
|
|
_ekf3_started = EKF3.InitialiseFilter();
|
|
}
|
|
}
|
|
|
|
// dead-reckoning support
|
|
bool AP_AHRS_NavEKF::get_position(struct Location &loc) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return AP_AHRS_DCM::get_position(loc);
|
|
|
|
case EKF_TYPE2:
|
|
if (EKF2.getLLH(loc)) {
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case EKF_TYPE3:
|
|
if (EKF3.getLLH(loc)) {
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL: {
|
|
if (_sitl) {
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
memset(&loc, 0, sizeof(loc));
|
|
loc.lat = fdm.latitude * 1e7;
|
|
loc.lng = fdm.longitude * 1e7;
|
|
loc.alt = fdm.altitude*100;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return AP_AHRS_DCM::get_position(loc);
|
|
}
|
|
|
|
// status reporting of estimated errors
|
|
float AP_AHRS_NavEKF::get_error_rp(void) const
|
|
{
|
|
return AP_AHRS_DCM::get_error_rp();
|
|
}
|
|
|
|
float AP_AHRS_NavEKF::get_error_yaw(void) const
|
|
{
|
|
return AP_AHRS_DCM::get_error_yaw();
|
|
}
|
|
|
|
// return a wind estimation vector, in m/s
|
|
Vector3f AP_AHRS_NavEKF::wind_estimate(void) const
|
|
{
|
|
Vector3f wind;
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
wind = AP_AHRS_DCM::wind_estimate();
|
|
break;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
wind.zero();
|
|
break;
|
|
#endif
|
|
|
|
case EKF_TYPE2:
|
|
EKF2.getWind(-1,wind);
|
|
break;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.getWind(-1,wind);
|
|
break;
|
|
|
|
}
|
|
return wind;
|
|
}
|
|
|
|
// return an airspeed estimate if available. return true
|
|
// if we have an estimate
|
|
bool AP_AHRS_NavEKF::airspeed_estimate(float *airspeed_ret) const
|
|
{
|
|
return AP_AHRS_DCM::airspeed_estimate(airspeed_ret);
|
|
}
|
|
|
|
// true if compass is being used
|
|
bool AP_AHRS_NavEKF::use_compass(void)
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
break;
|
|
case EKF_TYPE2:
|
|
return EKF2.use_compass();
|
|
|
|
case EKF_TYPE3:
|
|
return EKF3.use_compass();
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return true;
|
|
#endif
|
|
}
|
|
return AP_AHRS_DCM::use_compass();
|
|
}
|
|
|
|
|
|
// return secondary attitude solution if available, as eulers in radians
|
|
bool AP_AHRS_NavEKF::get_secondary_attitude(Vector3f &eulers) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// EKF is secondary
|
|
EKF2.getEulerAngles(-1, eulers);
|
|
return _ekf2_started;
|
|
|
|
case EKF_TYPE2:
|
|
|
|
case EKF_TYPE3:
|
|
|
|
default:
|
|
// DCM is secondary
|
|
eulers = _dcm_attitude;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
// return secondary attitude solution if available, as quaternion
|
|
bool AP_AHRS_NavEKF::get_secondary_quaternion(Quaternion &quat) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// EKF is secondary
|
|
EKF2.getQuaternion(-1, quat);
|
|
return _ekf2_started;
|
|
|
|
case EKF_TYPE2:
|
|
|
|
case EKF_TYPE3:
|
|
|
|
default:
|
|
// DCM is secondary
|
|
quat.from_rotation_matrix(AP_AHRS_DCM::get_rotation_body_to_ned());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// return secondary position solution if available
|
|
bool AP_AHRS_NavEKF::get_secondary_position(struct Location &loc) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// EKF is secondary
|
|
EKF2.getLLH(loc);
|
|
return _ekf2_started;
|
|
|
|
case EKF_TYPE2:
|
|
|
|
case EKF_TYPE3:
|
|
|
|
default:
|
|
// return DCM position
|
|
AP_AHRS_DCM::get_position(loc);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// EKF has a better ground speed vector estimate
|
|
Vector2f AP_AHRS_NavEKF::groundspeed_vector(void)
|
|
{
|
|
Vector3f vec;
|
|
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return AP_AHRS_DCM::groundspeed_vector();
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.getVelNED(-1,vec);
|
|
return Vector2f(vec.x, vec.y);
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.getVelNED(-1,vec);
|
|
return Vector2f(vec.x, vec.y);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL: {
|
|
if (_sitl) {
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
return Vector2f(fdm.speedN, fdm.speedE);
|
|
} else {
|
|
return AP_AHRS_DCM::groundspeed_vector();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// set the EKF's origin location in 10e7 degrees. This should only
|
|
// be called when the EKF has no absolute position reference (i.e. GPS)
|
|
// from which to decide the origin on its own
|
|
bool AP_AHRS_NavEKF::set_origin(const Location &loc)
|
|
{
|
|
const bool ret2 = EKF2.setOriginLLH(loc);
|
|
const bool ret3 = EKF3.setOriginLLH(loc);
|
|
|
|
// return success if active EKF's origin was set
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE2:
|
|
return ret2;
|
|
|
|
case EKF_TYPE3:
|
|
return ret3;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
if (_sitl) {
|
|
struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
fdm.home = loc;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// return true if inertial navigation is active
|
|
bool AP_AHRS_NavEKF::have_inertial_nav(void) const
|
|
{
|
|
return active_EKF_type() != EKF_TYPE_NONE;
|
|
}
|
|
|
|
// return a ground velocity in meters/second, North/East/Down
|
|
// order. Must only be called if have_inertial_nav() is true
|
|
bool AP_AHRS_NavEKF::get_velocity_NED(Vector3f &vec) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.getVelNED(-1,vec);
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.getVelNED(-1,vec);
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
if (!_sitl) {
|
|
return false;
|
|
}
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
vec = Vector3f(fdm.speedN, fdm.speedE, fdm.speedD);
|
|
return true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// returns the expected NED magnetic field
|
|
bool AP_AHRS_NavEKF::get_mag_field_NED(Vector3f &vec) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.getMagNED(-1,vec);
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.getMagNED(-1,vec);
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// returns the estimated magnetic field offsets in body frame
|
|
bool AP_AHRS_NavEKF::get_mag_field_correction(Vector3f &vec) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.getMagXYZ(-1,vec);
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.getMagXYZ(-1,vec);
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Get a derivative of the vertical position which is kinematically consistent with the vertical position is required by some control loops.
|
|
// This is different to the vertical velocity from the EKF which is not always consistent with the verical position due to the various errors that are being corrected for.
|
|
bool AP_AHRS_NavEKF::get_vert_pos_rate(float &velocity) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
velocity = EKF2.getPosDownDerivative(-1);
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
velocity = EKF3.getPosDownDerivative(-1);
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
if (_sitl) {
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
velocity = fdm.speedD;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// get latest height above ground level estimate in metres and a validity flag
|
|
bool AP_AHRS_NavEKF::get_hagl(float &height) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
return EKF2.getHAGL(height);
|
|
|
|
case EKF_TYPE3:
|
|
return EKF3.getHAGL(height);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL: {
|
|
if (!_sitl) {
|
|
return false;
|
|
}
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
height = fdm.altitude - get_home().alt*0.01f;
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// return a relative ground position to the origin in meters
|
|
// North/East/Down order.
|
|
bool AP_AHRS_NavEKF::get_relative_position_NED_origin(Vector3f &vec) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default: {
|
|
Vector2f posNE;
|
|
float posD;
|
|
if (EKF2.getPosNE(-1,posNE) && EKF2.getPosD(-1,posD)) {
|
|
// position is valid
|
|
vec.x = posNE.x;
|
|
vec.y = posNE.y;
|
|
vec.z = posD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case EKF_TYPE3: {
|
|
Vector2f posNE;
|
|
float posD;
|
|
if (EKF3.getPosNE(-1,posNE) && EKF3.getPosD(-1,posD)) {
|
|
// position is valid
|
|
vec.x = posNE.x;
|
|
vec.y = posNE.y;
|
|
vec.z = posD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL: {
|
|
if (!_sitl) {
|
|
return false;
|
|
}
|
|
Location loc;
|
|
get_position(loc);
|
|
const Vector2f diff2d = location_diff(get_home(), loc);
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
vec = Vector3f(diff2d.x, diff2d.y,
|
|
-(fdm.altitude - get_home().alt*0.01f));
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// return a relative ground position to the home in meters
|
|
// North/East/Down order.
|
|
bool AP_AHRS_NavEKF::get_relative_position_NED_home(Vector3f &vec) const
|
|
{
|
|
Location originLLH;
|
|
Vector3f originNED;
|
|
if (!get_relative_position_NED_origin(originNED) ||
|
|
!get_origin(originLLH)) {
|
|
return false;
|
|
}
|
|
|
|
const Vector3f offset = location_3d_diff_NED(originLLH, _home);
|
|
|
|
vec.x = originNED.x - offset.x;
|
|
vec.y = originNED.y - offset.y;
|
|
vec.z = originNED.z - offset.z;
|
|
return true;
|
|
}
|
|
|
|
// write a relative ground position estimate to the origin in meters, North/East order
|
|
// return true if estimate is valid
|
|
bool AP_AHRS_NavEKF::get_relative_position_NE_origin(Vector2f &posNE) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default: {
|
|
bool position_is_valid = EKF2.getPosNE(-1,posNE);
|
|
return position_is_valid;
|
|
}
|
|
|
|
case EKF_TYPE3: {
|
|
bool position_is_valid = EKF3.getPosNE(-1,posNE);
|
|
return position_is_valid;
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL: {
|
|
Location loc;
|
|
get_position(loc);
|
|
posNE = location_diff(get_home(), loc);
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// return a relative ground position to the home in meters
|
|
// North/East order.
|
|
bool AP_AHRS_NavEKF::get_relative_position_NE_home(Vector2f &posNE) const
|
|
{
|
|
Location originLLH;
|
|
Vector2f originNE;
|
|
if (!get_relative_position_NE_origin(originNE) ||
|
|
!get_origin(originLLH)) {
|
|
return false;
|
|
}
|
|
|
|
const Vector2f offset = location_diff(originLLH, _home);
|
|
|
|
posNE.x = originNE.x - offset.x;
|
|
posNE.y = originNE.y - offset.y;
|
|
return true;
|
|
}
|
|
|
|
// write a relative ground position estimate to the origin in meters, North/East order
|
|
|
|
|
|
// write a relative ground position to the origin in meters, Down
|
|
// return true if the estimate is valid
|
|
bool AP_AHRS_NavEKF::get_relative_position_D_origin(float &posD) const
|
|
{
|
|
switch (active_EKF_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default: {
|
|
bool position_is_valid = EKF2.getPosD(-1,posD);
|
|
return position_is_valid;
|
|
}
|
|
|
|
case EKF_TYPE3: {
|
|
bool position_is_valid = EKF3.getPosD(-1,posD);
|
|
return position_is_valid;
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL: {
|
|
if (!_sitl) {
|
|
return false;
|
|
}
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
posD = -(fdm.altitude - get_home().alt*0.01f);
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// write a relative ground position to home in meters, Down
|
|
// will use the barometer if the EKF isn't available
|
|
void AP_AHRS_NavEKF::get_relative_position_D_home(float &posD) const
|
|
{
|
|
Location originLLH;
|
|
float originD;
|
|
if (!get_relative_position_D_origin(originD) ||
|
|
!get_origin(originLLH)) {
|
|
posD = -AP::baro().get_altitude();
|
|
return;
|
|
}
|
|
|
|
posD = originD - ((originLLH.alt - _home.alt) * 0.01f);
|
|
return;
|
|
}
|
|
/*
|
|
canonicalise _ekf_type, forcing it to be 0, 2 or 3
|
|
type 1 has been deprecated
|
|
*/
|
|
uint8_t AP_AHRS_NavEKF::ekf_type(void) const
|
|
{
|
|
uint8_t type = _ekf_type;
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (type == EKF_TYPE_SITL) {
|
|
return type;
|
|
}
|
|
#endif
|
|
if ((always_use_EKF() && (type == 0)) || (type == 1) || (type > 3)) {
|
|
type = 2;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
AP_AHRS_NavEKF::EKF_TYPE AP_AHRS_NavEKF::active_EKF_type(void) const
|
|
{
|
|
EKF_TYPE ret = EKF_TYPE_NONE;
|
|
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return EKF_TYPE_NONE;
|
|
|
|
case 2: {
|
|
// do we have an EKF2 yet?
|
|
if (!_ekf2_started) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (always_use_EKF()) {
|
|
uint16_t ekf2_faults;
|
|
EKF2.getFilterFaults(-1,ekf2_faults);
|
|
if (ekf2_faults == 0) {
|
|
ret = EKF_TYPE2;
|
|
}
|
|
} else if (EKF2.healthy()) {
|
|
ret = EKF_TYPE2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 3: {
|
|
// do we have an EKF3 yet?
|
|
if (!_ekf3_started) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (always_use_EKF()) {
|
|
uint16_t ekf3_faults;
|
|
EKF3.getFilterFaults(-1,ekf3_faults);
|
|
if (ekf3_faults == 0) {
|
|
ret = EKF_TYPE3;
|
|
}
|
|
} else if (EKF3.healthy()) {
|
|
ret = EKF_TYPE3;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
ret = EKF_TYPE_SITL;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
fixed wing and rover when in fly_forward mode will fall back to
|
|
DCM if the EKF doesn't have GPS. This is the safest option as
|
|
DCM is very robust. Note that we also check the filter status
|
|
when fly_forward is false and we are disarmed. This is to ensure
|
|
that the arming checks do wait for good GPS position on fixed
|
|
wing and rover
|
|
*/
|
|
if (ret != EKF_TYPE_NONE &&
|
|
(_vehicle_class == AHRS_VEHICLE_FIXED_WING ||
|
|
_vehicle_class == AHRS_VEHICLE_GROUND) &&
|
|
(_flags.fly_forward || !hal.util->get_soft_armed())) {
|
|
nav_filter_status filt_state;
|
|
if (ret == EKF_TYPE2) {
|
|
EKF2.getFilterStatus(-1,filt_state);
|
|
} else if (ret == EKF_TYPE3) {
|
|
EKF3.getFilterStatus(-1,filt_state);
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
} else if (ret == EKF_TYPE_SITL) {
|
|
get_filter_status(filt_state);
|
|
#endif
|
|
}
|
|
if (hal.util->get_soft_armed() && !filt_state.flags.using_gps && AP::gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
// if the EKF is not fusing GPS and we have a 3D lock, then
|
|
// plane and rover would prefer to use the GPS position from
|
|
// DCM. This is a safety net while some issues with the EKF
|
|
// get sorted out
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (hal.util->get_soft_armed() && filt_state.flags.const_pos_mode) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (!filt_state.flags.attitude ||
|
|
!filt_state.flags.vert_vel ||
|
|
!filt_state.flags.vert_pos) {
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
if (!filt_state.flags.horiz_vel ||
|
|
(!filt_state.flags.horiz_pos_abs && !filt_state.flags.horiz_pos_rel)) {
|
|
if ((!_compass || !_compass->use_for_yaw()) &&
|
|
AP::gps().status() >= AP_GPS::GPS_OK_FIX_3D &&
|
|
AP::gps().ground_speed() < 2) {
|
|
/*
|
|
special handling for non-compass mode when sitting
|
|
still. The EKF may not yet have aligned its yaw. We
|
|
accept EKF as healthy to allow arming. Once we reach
|
|
speed the EKF should get yaw alignment
|
|
*/
|
|
if (filt_state.flags.pred_horiz_pos_abs &&
|
|
filt_state.flags.pred_horiz_pos_rel) {
|
|
return ret;
|
|
}
|
|
}
|
|
return EKF_TYPE_NONE;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
check if the AHRS subsystem is healthy
|
|
*/
|
|
bool AP_AHRS_NavEKF::healthy(void) const
|
|
{
|
|
// If EKF is started we switch away if it reports unhealthy. This could be due to bad
|
|
// sensor data. If EKF reversion is inhibited, we only switch across if the EKF encounters
|
|
// an internal processing error, but not for bad sensor data.
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return AP_AHRS_DCM::healthy();
|
|
|
|
case 2: {
|
|
bool ret = _ekf2_started && EKF2.healthy();
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
if ((_vehicle_class == AHRS_VEHICLE_FIXED_WING ||
|
|
_vehicle_class == AHRS_VEHICLE_GROUND) &&
|
|
active_EKF_type() != EKF_TYPE2) {
|
|
// on fixed wing we want to be using EKF to be considered
|
|
// healthy if EKF is enabled
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case 3: {
|
|
bool ret = _ekf3_started && EKF3.healthy();
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
if ((_vehicle_class == AHRS_VEHICLE_FIXED_WING ||
|
|
_vehicle_class == AHRS_VEHICLE_GROUND) &&
|
|
active_EKF_type() != EKF_TYPE3) {
|
|
// on fixed wing we want to be using EKF to be considered
|
|
// healthy if EKF is enabled
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
return AP_AHRS_DCM::healthy();
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::set_ekf_use(bool setting)
|
|
{
|
|
_ekf_type.set(setting?1:0);
|
|
}
|
|
|
|
// true if the AHRS has completed initialisation
|
|
bool AP_AHRS_NavEKF::initialised(void) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return true;
|
|
|
|
case 2:
|
|
default:
|
|
// initialisation complete 10sec after ekf has started
|
|
return (_ekf2_started && (AP_HAL::millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS));
|
|
|
|
case 3:
|
|
// initialisation complete 10sec after ekf has started
|
|
return (_ekf3_started && (AP_HAL::millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS));
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return true;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// get_filter_status : returns filter status as a series of flags
|
|
bool AP_AHRS_NavEKF::get_filter_status(nav_filter_status &status) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.getFilterStatus(-1,status);
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.getFilterStatus(-1,status);
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
memset(&status, 0, sizeof(status));
|
|
status.flags.attitude = 1;
|
|
status.flags.horiz_vel = 1;
|
|
status.flags.vert_vel = 1;
|
|
status.flags.horiz_pos_rel = 1;
|
|
status.flags.horiz_pos_abs = 1;
|
|
status.flags.vert_pos = 1;
|
|
status.flags.pred_horiz_pos_rel = 1;
|
|
status.flags.pred_horiz_pos_abs = 1;
|
|
status.flags.using_gps = 1;
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
// write optical flow data to EKF
|
|
void AP_AHRS_NavEKF::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, const Vector3f &posOffset)
|
|
{
|
|
EKF2.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, posOffset);
|
|
EKF3.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, posOffset);
|
|
}
|
|
|
|
// write body frame odometry measurements to the EKF
|
|
void AP_AHRS_NavEKF::writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset)
|
|
{
|
|
EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, posOffset);
|
|
}
|
|
|
|
// Write position and quaternion data from an external navigation system
|
|
void AP_AHRS_NavEKF::writeExtNavData(const Vector3f &sensOffset, const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint32_t resetTime_ms)
|
|
{
|
|
EKF2.writeExtNavData(sensOffset, pos, quat, posErr, angErr, timeStamp_ms, resetTime_ms);
|
|
}
|
|
|
|
|
|
// inhibit GPS usage
|
|
uint8_t AP_AHRS_NavEKF::setInhibitGPS(void)
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
|
|
case 2:
|
|
default:
|
|
return EKF2.setInhibitGPS();
|
|
|
|
case 3:
|
|
return EKF3.setInhibitGPS();
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// get speed limit
|
|
void AP_AHRS_NavEKF::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
|
|
case 2:
|
|
EKF2.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler);
|
|
break;
|
|
|
|
case 3:
|
|
EKF3.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler);
|
|
break;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
// same as EKF2 for no optical flow
|
|
ekfGndSpdLimit = 400.0f;
|
|
ekfNavVelGainScaler = 1.0f;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// get compass offset estimates
|
|
// true if offsets are valid
|
|
bool AP_AHRS_NavEKF::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
|
|
case 2:
|
|
default:
|
|
return EKF2.getMagOffsets(mag_idx, magOffsets);
|
|
|
|
case 3:
|
|
return EKF3.getMagOffsets(mag_idx, magOffsets);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
magOffsets.zero();
|
|
return true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Retrieves the NED delta velocity corrected
|
|
void AP_AHRS_NavEKF::getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const
|
|
{
|
|
const EKF_TYPE type = active_EKF_type();
|
|
if (type == EKF_TYPE2 || type == EKF_TYPE3) {
|
|
int8_t imu_idx = 0;
|
|
Vector3f accel_bias;
|
|
if (type == EKF_TYPE2) {
|
|
accel_bias.zero();
|
|
imu_idx = EKF2.getPrimaryCoreIMUIndex();
|
|
EKF2.getAccelZBias(-1,accel_bias.z);
|
|
} else if (type == EKF_TYPE3) {
|
|
imu_idx = EKF3.getPrimaryCoreIMUIndex();
|
|
EKF3.getAccelBias(-1,accel_bias);
|
|
}
|
|
if (imu_idx == -1) {
|
|
// should never happen, call parent implementation in this scenario
|
|
AP_AHRS::getCorrectedDeltaVelocityNED(ret, dt);
|
|
return;
|
|
}
|
|
ret.zero();
|
|
const AP_InertialSensor &_ins = AP::ins();
|
|
_ins.get_delta_velocity((uint8_t)imu_idx, ret);
|
|
dt = _ins.get_delta_velocity_dt((uint8_t)imu_idx);
|
|
ret -= accel_bias*dt;
|
|
ret = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * ret;
|
|
ret.z += GRAVITY_MSS*dt;
|
|
} else {
|
|
AP_AHRS::getCorrectedDeltaVelocityNED(ret, dt);
|
|
}
|
|
}
|
|
|
|
// report any reason for why the backend is refusing to initialise
|
|
const char *AP_AHRS_NavEKF::prearm_failure_reason(void) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 0:
|
|
return nullptr;
|
|
|
|
case 2:
|
|
default:
|
|
return EKF2.prearm_failure_reason();
|
|
|
|
case 3:
|
|
return EKF3.prearm_failure_reason();
|
|
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
|
|
uint32_t AP_AHRS_NavEKF::getLastYawResetAngle(float &yawAng) const
|
|
{
|
|
switch (ekf_type()) {
|
|
|
|
case 2:
|
|
default:
|
|
return EKF2.getLastYawResetAngle(yawAng);
|
|
|
|
case 3:
|
|
return EKF3.getLastYawResetAngle(yawAng);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return 0;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// return the amount of NE position change in metres due to the last reset
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t AP_AHRS_NavEKF::getLastPosNorthEastReset(Vector2f &pos) const
|
|
{
|
|
switch (ekf_type()) {
|
|
|
|
case 2:
|
|
default:
|
|
return EKF2.getLastPosNorthEastReset(pos);
|
|
|
|
case 3:
|
|
return EKF3.getLastPosNorthEastReset(pos);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return 0;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// return the amount of NE velocity change in metres/sec due to the last reset
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t AP_AHRS_NavEKF::getLastVelNorthEastReset(Vector2f &vel) const
|
|
{
|
|
switch (ekf_type()) {
|
|
|
|
case 2:
|
|
default:
|
|
return EKF2.getLastVelNorthEastReset(vel);
|
|
|
|
case 3:
|
|
return EKF3.getLastVelNorthEastReset(vel);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return 0;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// return the amount of vertical position change due to the last reset in meters
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t AP_AHRS_NavEKF::getLastPosDownReset(float &posDelta) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE2:
|
|
return EKF2.getLastPosDownReset(posDelta);
|
|
|
|
case EKF_TYPE3:
|
|
return EKF3.getLastPosDownReset(posDelta);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return 0;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Resets the baro so that it reads zero at the current height
|
|
// Resets the EKF height to zero
|
|
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
|
// Returns true if the height datum reset has been performed
|
|
// If using a range finder for height no reset is performed and it returns false
|
|
bool AP_AHRS_NavEKF::resetHeightDatum(void)
|
|
{
|
|
switch (ekf_type()) {
|
|
|
|
case 2:
|
|
default: {
|
|
EKF3.resetHeightDatum();
|
|
return EKF2.resetHeightDatum();
|
|
}
|
|
|
|
case 3: {
|
|
EKF2.resetHeightDatum();
|
|
return EKF3.resetHeightDatum();
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return false;
|
|
#endif
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// send a EKF_STATUS_REPORT for current EKF
|
|
void AP_AHRS_NavEKF::send_ekf_status_report(mavlink_channel_t chan) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// send zero status report
|
|
mavlink_msg_ekf_status_report_send(chan, 0, 0, 0, 0, 0, 0, 0);
|
|
break;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
// send zero status report
|
|
mavlink_msg_ekf_status_report_send(chan, 0, 0, 0, 0, 0, 0, 0);
|
|
break;
|
|
#endif
|
|
|
|
case EKF_TYPE2:
|
|
return EKF2.send_status_report(chan);
|
|
|
|
case EKF_TYPE3:
|
|
return EKF3.send_status_report(chan);
|
|
|
|
}
|
|
}
|
|
|
|
// passes a reference to the location of the inertial navigation origin
|
|
// in WGS-84 coordinates
|
|
// returns a boolean true when the inertial navigation origin has been set
|
|
bool AP_AHRS_NavEKF::get_origin(Location &ret) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
if (!EKF2.getOriginLLH(-1,ret)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
if (!EKF3.getOriginLLH(-1,ret)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
if (!_sitl) {
|
|
return false;
|
|
}
|
|
const struct SITL::sitl_fdm &fdm = _sitl->state;
|
|
ret = fdm.home;
|
|
return true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// get_hgt_ctrl_limit - get maximum height to be observed by the control loops in metres and a validity flag
|
|
// this is used to limit height during optical flow navigation
|
|
// it will return false when no limiting is required
|
|
bool AP_AHRS_NavEKF::get_hgt_ctrl_limit(float& limit) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// We are not using an EKF so no limiting applies
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
return EKF2.getHeightControlLimit(limit);
|
|
|
|
case EKF_TYPE3:
|
|
return EKF3.getHeightControlLimit(limit);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// get_location - updates the provided location with the latest calculated location
|
|
// returns true on success (i.e. the EKF knows it's latest position), false on failure
|
|
bool AP_AHRS_NavEKF::get_location(struct Location &loc) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// We are not using an EKF so no data
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
return EKF2.getLLH(loc);
|
|
|
|
case EKF_TYPE3:
|
|
return EKF3.getLLH(loc);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
return get_position(loc);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// get_variances - provides the innovations normalised using the innovation variance where a value of 0
|
|
// indicates prefect consistency between the measurement and the EKF solution and a value of of 1 is the maximum
|
|
// inconsistency that will be accpeted by the filter
|
|
// boolean false is returned if variances are not available
|
|
bool AP_AHRS_NavEKF::get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE_NONE:
|
|
// We are not using an EKF so no data
|
|
return false;
|
|
|
|
case EKF_TYPE2:
|
|
default:
|
|
// use EKF to get variance
|
|
EKF2.getVariances(-1,velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
return true;
|
|
|
|
case EKF_TYPE3:
|
|
// use EKF to get variance
|
|
EKF3.getVariances(-1,velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
return true;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
velVar = 0;
|
|
posVar = 0;
|
|
hgtVar = 0;
|
|
magVar.zero();
|
|
tasVar = 0;
|
|
offset.zero();
|
|
return true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::setTakeoffExpected(bool val)
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.setTakeoffExpected(val);
|
|
break;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.setTakeoffExpected(val);
|
|
break;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void AP_AHRS_NavEKF::setTouchdownExpected(bool val)
|
|
{
|
|
switch (ekf_type()) {
|
|
case EKF_TYPE2:
|
|
default:
|
|
EKF2.setTouchdownExpected(val);
|
|
break;
|
|
|
|
case EKF_TYPE3:
|
|
EKF3.setTouchdownExpected(val);
|
|
break;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
case EKF_TYPE_SITL:
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool AP_AHRS_NavEKF::getGpsGlitchStatus() const
|
|
{
|
|
nav_filter_status ekf_status {};
|
|
if (!get_filter_status(ekf_status)) {
|
|
return false;
|
|
}
|
|
return ekf_status.flags.gps_glitching;
|
|
}
|
|
|
|
// is the EKF backend doing its own sensor logging?
|
|
bool AP_AHRS_NavEKF::have_ekf_logging(void) const
|
|
{
|
|
switch (ekf_type()) {
|
|
case 2:
|
|
return EKF2.have_ekf_logging();
|
|
|
|
case 3:
|
|
return EKF3.have_ekf_logging();
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// get the index of the current primary IMU
|
|
uint8_t AP_AHRS_NavEKF::get_primary_IMU_index() const
|
|
{
|
|
int8_t imu = -1;
|
|
switch (ekf_type()) {
|
|
case 2:
|
|
// let EKF2 choose primary IMU
|
|
imu = EKF2.getPrimaryCoreIMUIndex();
|
|
break;
|
|
case 3:
|
|
// let EKF2 choose primary IMU
|
|
imu = EKF3.getPrimaryCoreIMUIndex();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (imu == -1) {
|
|
imu = AP::ins().get_primary_accel();
|
|
}
|
|
return imu;
|
|
}
|
|
|
|
// get earth-frame accel vector for primary IMU
|
|
const Vector3f &AP_AHRS_NavEKF::get_accel_ef() const
|
|
{
|
|
return get_accel_ef(get_primary_accel_index());
|
|
}
|
|
|
|
|
|
// get the index of the current primary accelerometer sensor
|
|
uint8_t AP_AHRS_NavEKF::get_primary_accel_index(void) const
|
|
{
|
|
if (ekf_type() != 0) {
|
|
return get_primary_IMU_index();
|
|
}
|
|
return AP::ins().get_primary_accel();
|
|
}
|
|
|
|
// get the index of the current primary gyro sensor
|
|
uint8_t AP_AHRS_NavEKF::get_primary_gyro_index(void) const
|
|
{
|
|
if (ekf_type() != 0) {
|
|
return get_primary_IMU_index();
|
|
}
|
|
return AP::ins().get_primary_gyro();
|
|
}
|
|
|
|
|
|
AP_AHRS_NavEKF &AP::ahrs_navekf()
|
|
{
|
|
return static_cast<AP_AHRS_NavEKF&>(*AP_AHRS::get_singleton());
|
|
}
|
|
|
|
#endif // AP_AHRS_NAVEKF_AVAILABLE
|
|
|