5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-15 05:08:41 -04:00
ardupilot/libraries/Desktop/support/sitl.cpp
2012-04-24 22:24:58 +10:00

379 lines
8.0 KiB
C++

/*
SITL handling
This simulates the APM1 hardware sufficiently for the APM code to
think it is running on real hardware
Andrew Tridgell November 2011
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <time.h>
#include <sys/time.h>
#include <signal.h>
#include <math.h>
#include <APM_RC.h>
#include <wiring.h>
#include <AP_PeriodicProcess.h>
#include <AP_TimerProcess.h>
#include <GCS_MAVLink.h>
#include <avr/interrupt.h>
#include "sitl_adc.h"
#include "sitl_rc.h"
#include "desktop.h"
#include "util.h"
/*
the sitl_fdm packet is received by the SITL build from the flight
simulator. This is used to feed the internal sensor emulation
*/
struct sitl_fdm {
// little-endian packet format
double latitude, longitude; // degrees
double altitude; // MSL
double heading; // degrees
double speedN, speedE; // m/s
double xAccel, yAccel, zAccel; // m/s/s in body frame
double rollRate, pitchRate, yawRate; // degrees/s/s in earth frame
double rollDeg, pitchDeg, yawDeg; // euler angles, degrees
double airspeed; // m/s
uint32_t magic; // 0x4c56414e
};
#define SIMIN_PORT 5501
#define RCOUT_PORT 5502
static int sitl_fd;
struct sockaddr_in rcout_addr;
#ifndef __CYGWIN__
static pid_t parent_pid;
#endif
struct ADC_UDR2 UDR2;
struct RC_ICR4 ICR4;
extern AP_TimerProcess timer_scheduler;
extern Arduino_Mega_ISR_Registry isr_registry;
static struct sitl_fdm sim_state;
static uint32_t update_count;
/*
setup a SITL FDM listening UDP port
*/
static void setup_fdm(void)
{
int one=1, ret;
struct sockaddr_in sockaddr;
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(SIMIN_PORT);
sockaddr.sin_family = AF_INET;
sitl_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (sitl_fd == -1) {
fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
ret = bind(sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "SITL: bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port), strerror(errno));
exit(1);
}
set_nonblocking(sitl_fd);
}
/*
check for a SITL FDM packet
*/
static void sitl_fdm_input(void)
{
ssize_t size;
struct pwm_packet {
uint16_t pwm[8];
};
union {
struct sitl_fdm fg_pkt;
struct pwm_packet pwm_pkt;
} d;
size = recv(sitl_fd, &d, sizeof(d), MSG_DONTWAIT);
switch (size) {
case 132:
static uint32_t last_report;
static uint32_t count;
if (d.fg_pkt.magic != 0x4c56414e) {
printf("Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic);
return;
}
if (d.fg_pkt.latitude == 0 ||
d.fg_pkt.longitude == 0 ||
d.fg_pkt.altitude <= 0) {
// garbage input
return;
}
sim_state = d.fg_pkt;
update_count++;
count++;
if (millis() - last_report > 1000) {
//printf("SIM %u FPS\n", count);
count = 0;
last_report = millis();
}
break;
case 16: {
// a packet giving the receiver PWM inputs
uint8_t i;
for (i=0; i<8; i++) {
// setup the ICR4 register for the RC channel
// inputs
if (d.pwm_pkt.pwm[i] != 0) {
ICR4.set(i, d.pwm_pkt.pwm[i]);
}
}
break;
}
}
}
// used for noise generation in the ADC code
// motor speed in revolutions per second
float sitl_motor_speed[4] = {0,0,0,0};
/*
send RC outputs to simulator
*/
static void sitl_simulator_output(void)
{
static uint32_t last_update;
uint16_t pwm[11];
/* this maps the registers used for PWM outputs. The RC
* driver updates these whenever it wants the channel output
* to change */
uint16_t *reg[11] = { &OCR5B, &OCR5C, &OCR1B, &OCR1C,
&OCR4C, &OCR4B, &OCR3C, &OCR3B,
&OCR5A, &OCR1A, &OCR3A };
uint8_t i;
if (last_update == 0) {
for (i=0; i<11; i++) {
(*reg[i]) = 1000*2;
}
if (!desktop_state.quadcopter) {
(*reg[0]) = (*reg[1]) = (*reg[3]) = 1500*2;
(*reg[7]) = 1800*2;
}
}
// output at chosen framerate
if (millis() - last_update < 1000/desktop_state.framerate) {
return;
}
last_update = millis();
for (i=0; i<11; i++) {
if (*reg[i] == 0xFFFF) {
pwm[i] = 0;
} else {
pwm[i] = (*reg[i])/2;
}
}
if (!desktop_state.quadcopter) {
// 400kV motor, 16V
sitl_motor_speed[0] = ((pwm[2]-1000)/1000.0) * 400 * 16 / 60.0;
} else {
// 850kV motor, 16V
for (i=0; i<4; i++) {
sitl_motor_speed[i] = ((pwm[i]-1000)/1000.0) * 850 * 12 / 60.0;
}
}
sendto(sitl_fd, (void*)pwm, sizeof(pwm), MSG_DONTWAIT, (const sockaddr *)&rcout_addr, sizeof(rcout_addr));
}
/*
timer called at 1kHz
*/
static void timer_handler(int signum)
{
static uint32_t last_update_count;
static bool running;
if (running) {
return;
}
running = true;
cli();
#ifndef __CYGWIN__
/* make sure we die if our parent dies */
if (kill(parent_pid, 0) != 0) {
exit(1);
}
#else
static uint16_t count = 0;
static uint32_t last_report;
count++;
if (millis() - last_report > 1000) {
printf("TH %u cps\n", count);
count = 0;
last_report = millis();
}
#endif
/* check for packet from flight sim */
sitl_fdm_input();
// trigger all timers
timer_scheduler.run();
// trigger RC input
if (isr_registry._registry[ISR_REGISTRY_TIMER4_CAPT]) {
isr_registry._registry[ISR_REGISTRY_TIMER4_CAPT]();
}
// send RC output to flight sim
sitl_simulator_output();
if (update_count == 0) {
sitl_update_gps(0, 0, 0, 0, 0, false);
sei();
running = false;
return;
}
if (update_count == last_update_count) {
sei();
running = false;
return;
}
last_update_count = update_count;
sitl_update_gps(sim_state.latitude, sim_state.longitude,
sim_state.altitude,
sim_state.speedN, sim_state.speedE, true);
sitl_update_adc(sim_state.rollDeg, sim_state.pitchDeg, sim_state.yawDeg,
sim_state.rollRate, sim_state.pitchRate, sim_state.yawRate,
sim_state.xAccel, sim_state.yAccel, sim_state.zAccel,
sim_state.airspeed);
sitl_update_barometer(sim_state.altitude);
sitl_update_compass(sim_state.rollDeg, sim_state.pitchDeg, sim_state.heading);
sei();
running = false;
}
/*
setup a timer used to prod the ISRs
*/
static void setup_timer(void)
{
struct itimerval it;
struct sigaction act;
act.sa_handler = timer_handler;
act.sa_flags = SA_RESTART|SA_NODEFER;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGALRM);
sigaction(SIGALRM, &act, NULL);
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000; // 1KHz
it.it_value = it.it_interval;
setitimer(ITIMER_REAL, &it, NULL);
}
/*
setup for SITL handling
*/
void sitl_setup(void)
{
#ifndef __CYGWIN__
parent_pid = getppid();
#endif
rcout_addr.sin_family = AF_INET;
rcout_addr.sin_port = htons(RCOUT_PORT);
inet_pton(AF_INET, "127.0.0.1", &rcout_addr.sin_addr);
setup_timer();
setup_fdm();
sitl_setup_adc();
printf("Starting SITL input\n");
// setup some initial values
sitl_update_barometer(desktop_state.initial_height);
sitl_update_adc(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0);
sitl_update_compass(0, 0, 0);
sitl_update_gps(0, 0, 0, 0, 0, false);
}
/* report SITL state via MAVLink */
void sitl_simstate_send(uint8_t chan)
{
double p, q, r;
float yaw;
extern void mavlink_simstate_send(uint8_t chan,
float roll,
float pitch,
float yaw,
float xAcc,
float yAcc,
float zAcc,
float p,
float q,
float r);
// we want the gyro values to be directly comparable to the
// raw_imu message, which is in body frame
convert_body_frame(sim_state.rollDeg, sim_state.pitchDeg,
sim_state.rollRate, sim_state.pitchRate, sim_state.yawRate,
&p, &q, &r);
// convert to same conventions as DCM
yaw = sim_state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
mavlink_simstate_send(chan,
ToRad(sim_state.rollDeg),
ToRad(sim_state.pitchDeg),
ToRad(yaw),
sim_state.xAccel,
sim_state.yAccel,
sim_state.zAccel,
p, q, r);
}