ardupilot/Blimp/Blimp.cpp
2021-07-06 14:56:02 +10:00

291 lines
8.6 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Blimp.h"
#define FORCE_VERSION_H_INCLUDE
#include "version.h"
#undef FORCE_VERSION_H_INCLUDE
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Blimp, &blimp, func, rate_hz, max_time_micros)
/*
scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called (in hz)
and the maximum time they are expected to take (in microseconds)
*/
const AP_Scheduler::Task Blimp::scheduler_tasks[] = {
SCHED_TASK(rc_loop, 100, 130),
SCHED_TASK(throttle_loop, 50, 75),
SCHED_TASK_CLASS(AP_GPS, &blimp.gps, update, 50, 200),
SCHED_TASK(update_batt_compass, 10, 120),
SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&blimp.g2.rc_channels, read_aux_all, 10, 50),
SCHED_TASK(arm_motors_check, 10, 50),
SCHED_TASK(update_altitude, 10, 100),
SCHED_TASK(three_hz_loop, 3, 75),
SCHED_TASK_CLASS(AP_ServoRelayEvents, &blimp.ServoRelayEvents, update_events, 50, 75),
SCHED_TASK_CLASS(AP_Baro, &blimp.barometer, accumulate, 50, 90),
#if LOGGING_ENABLED == ENABLED
SCHED_TASK(full_rate_logging, 50, 50),
#endif
SCHED_TASK_CLASS(AP_Notify, &blimp.notify, update, 50, 90),
SCHED_TASK(one_hz_loop, 1, 100),
SCHED_TASK(ekf_check, 10, 75),
SCHED_TASK(check_vibration, 10, 50),
SCHED_TASK_CLASS(GCS, (GCS*)&blimp._gcs, update_receive, 400, 180),
SCHED_TASK_CLASS(GCS, (GCS*)&blimp._gcs, update_send, 400, 550),
#if LOGGING_ENABLED == ENABLED
SCHED_TASK(ten_hz_logging_loop, 10, 350),
SCHED_TASK(twentyfive_hz_logging, 25, 110),
SCHED_TASK_CLASS(AP_Logger, &blimp.logger, periodic_tasks, 400, 300),
#endif
SCHED_TASK_CLASS(AP_InertialSensor, &blimp.ins, periodic, 400, 50),
SCHED_TASK_CLASS(AP_Scheduler, &blimp.scheduler, update_logging, 0.1, 75),
SCHED_TASK(compass_cal_update, 100, 100),
SCHED_TASK(accel_cal_update, 10, 100),
#if STATS_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Stats, &blimp.g2.stats, update, 1, 100),
#endif
};
void Blimp::get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit)
{
tasks = &scheduler_tasks[0];
task_count = ARRAY_SIZE(scheduler_tasks);
log_bit = MASK_LOG_PM;
}
constexpr int8_t Blimp::_failsafe_priorities[4];
// Main loop
void Blimp::fast_loop()
{
// update INS immediately to get current gyro data populated
ins.update();
// send outputs to the motors library immediately
motors_output();
// run EKF state estimator (expensive)
// --------------------
read_AHRS();
// Inertial Nav
// --------------------
read_inertia();
// check if ekf has reset target heading or position
check_ekf_reset();
// run the attitude controllers
update_flight_mode();
// update home from EKF if necessary
update_home_from_EKF();
// log sensor health
if (should_log(MASK_LOG_ANY)) {
Log_Sensor_Health();
}
AP_Vehicle::fast_loop(); //just does gyro fft
}
// rc_loops - reads user input from transmitter/receiver
// called at 100hz
void Blimp::rc_loop()
{
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
rc().read_mode_switch();
}
// throttle_loop - should be run at 50 hz
// ---------------------------
void Blimp::throttle_loop()
{
// check auto_armed status
update_auto_armed();
}
// update_batt_compass - read battery and compass
// should be called at 10hz
void Blimp::update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
battery.read();
if (AP::compass().enabled()) {
// update compass with throttle value - used for compassmot
compass.set_voltage(battery.voltage());
compass.read();
}
}
// Full rate logging of attitude, rate and pid loops
void Blimp::full_rate_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
}
if (should_log(MASK_LOG_PID)) {
Log_Write_PIDs();
}
}
// ten_hz_logging_loop
// should be run at 10hz
void Blimp::ten_hz_logging_loop()
{
// log attitude data if we're not already logging at the higher rate
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
}
// log EKF attitude data
if (should_log(MASK_LOG_ATTITUDE_MED) || should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_EKF_POS();
}
if (should_log(MASK_LOG_MOTBATT)) {
Log_Write_MotBatt();
}
if (should_log(MASK_LOG_RCIN)) {
logger.Write_RCIN();
if (rssi.enabled()) {
logger.Write_RSSI();
}
}
if (should_log(MASK_LOG_RCOUT)) {
logger.Write_RCOUT();
}
if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) {
AP::ins().Write_Vibration();
}
}
// twentyfive_hz_logging - should be run at 25hz
void Blimp::twentyfive_hz_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_EKF_POS();
}
if (should_log(MASK_LOG_IMU)) {
AP::ins().Write_IMU();
}
}
// three_hz_loop - 3.3hz loop
void Blimp::three_hz_loop()
{
// check if we've lost contact with the ground station
failsafe_gcs_check();
}
// one_hz_loop - runs at 1Hz
void Blimp::one_hz_loop()
{
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(LogDataID::AP_STATE, ap.value);
}
arming.update();
if (!motors->armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.update_orientation();
}
// update assigned functions and enable auxiliary servos
SRV_Channels::enable_aux_servos();
AP_Notify::flags.flying = !ap.land_complete;
}
void Blimp::read_AHRS(void)
{
// we tell AHRS to skip INS update as we have already done it in fast_loop()
ahrs.update(true);
IGNORE_RETURN(ahrs.get_velocity_NED(vel_ned));
IGNORE_RETURN(ahrs.get_relative_position_NED_home(pos_ned));
vel_yaw = ahrs.get_yaw_rate_earth();
Vector2f vel_xy_filtd = vel_xy_filter.apply({vel_ned.x, vel_ned.y});
vel_ned_filtd = {vel_xy_filtd.x, vel_xy_filtd.y, vel_z_filter.apply(vel_ned.z)};
vel_yaw_filtd = vel_yaw_filter.apply(vel_yaw);
}
// read baro and log control tuning
void Blimp::update_altitude()
{
// read in baro altitude
read_barometer();
if (should_log(MASK_LOG_CTUN)) {
#if HAL_GYROFFT_ENABLED
gyro_fft.write_log_messages();
#else
write_notch_log_messages();
#endif
}
}
//Conversions are in 2D so that up remains up in world frame when the blimp is not exactly level.
void Blimp::rotate_BF_to_NE(Vector2f &vec)
{
float ne_x = vec.x*ahrs.cos_yaw() - vec.y*ahrs.sin_yaw();
float ne_y = vec.x*ahrs.sin_yaw() + vec.y*ahrs.cos_yaw();
vec.x = ne_x;
vec.y = ne_y;
}
void Blimp::rotate_NE_to_BF(Vector2f &vec)
{
float bf_x = vec.x*ahrs.cos_yaw() + vec.y*ahrs.sin_yaw();
float bf_y = -vec.x*ahrs.sin_yaw() + vec.y*ahrs.cos_yaw();
vec.x = bf_x;
vec.y = bf_y;
}
/*
constructor for main Blimp class
*/
Blimp::Blimp(void)
: logger(g.log_bitmask),
flight_modes(&g.flight_mode1),
control_mode(Mode::Number::MANUAL),
land_accel_ef_filter(LAND_DETECTOR_ACCEL_LPF_CUTOFF),
rc_throttle_control_in_filter(1.0f),
inertial_nav(ahrs),
param_loader(var_info),
flightmode(&mode_manual)
{
// init sensor error logging flags
sensor_health.baro = true;
sensor_health.compass = true;
}
Blimp blimp;
AP_Vehicle& vehicle = blimp;
AP_HAL_MAIN_CALLBACKS(&blimp);