mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-06 07:58:28 -04:00
0dde0b3551
this adds SKID_STEER_IN and SKID_STEER_OUT parameters for controlling skid skeering control and output
167 lines
5.7 KiB
Plaintext
167 lines
5.7 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
static void throttle_slew_limit(int16_t last_throttle)
|
|
{
|
|
// if slew limit rate is set to zero then do not slew limit
|
|
if (g.throttle_slewrate) {
|
|
// limit throttle change by the given percentage per second
|
|
float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min);
|
|
// allow a minimum change of 1 PWM per cycle
|
|
if (temp < 1) {
|
|
temp = 1;
|
|
}
|
|
g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
calculate the throtte for auto-throttle modes
|
|
*/
|
|
static void calc_throttle(float target_speed)
|
|
{
|
|
if (target_speed <= 0) {
|
|
// cope with zero requested speed
|
|
g.channel_throttle.servo_out = g.throttle_min.get();
|
|
return;
|
|
}
|
|
|
|
int throttle_target = g.throttle_cruise + throttle_nudge;
|
|
|
|
/*
|
|
reduce target speed in proportion to turning rate, up to the
|
|
SPEED_TURN_GAIN percentage.
|
|
*/
|
|
float steer_rate = fabsf((nav_steer/nav_gain_scaler) / (float)SERVO_MAX);
|
|
steer_rate = constrain(steer_rate, 0.0, 1.0);
|
|
float reduction = 1.0 - steer_rate*(100 - g.speed_turn_gain)*0.01;
|
|
|
|
if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) {
|
|
// in auto-modes we reduce speed when approaching waypoints
|
|
float reduction2 = 1.0 - (100-g.speed_turn_gain)*0.01*((g.speed_turn_dist - wp_distance)/g.speed_turn_dist);
|
|
if (reduction2 < reduction) {
|
|
reduction = reduction2;
|
|
}
|
|
}
|
|
|
|
// reduce the target speed by the reduction factor
|
|
target_speed *= reduction;
|
|
|
|
groundspeed_error = target_speed - ground_speed;
|
|
|
|
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100);
|
|
|
|
// also reduce the throttle by the reduction factor. This gives a
|
|
// much faster response in turns
|
|
throttle *= reduction;
|
|
|
|
g.channel_throttle.servo_out = constrain_int16(throttle, g.throttle_min.get(), g.throttle_max.get());
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired turn angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
static void calc_nav_steer()
|
|
{
|
|
// Adjust gain based on ground speed
|
|
nav_gain_scaler = (float)ground_speed / g.speed_cruise;
|
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
|
|
|
|
// Calculate the required turn of the wheels rover
|
|
// ----------------------------------------
|
|
|
|
// negative error = left turn
|
|
// positive error = right turn
|
|
nav_steer = g.pidNavSteer.get_pid(bearing_error_cd, nav_gain_scaler);
|
|
|
|
if (obstacle) { // obstacle avoidance
|
|
nav_steer += g.sonar_turn_angle*100;
|
|
}
|
|
|
|
g.channel_steer.servo_out = nav_steer;
|
|
}
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
static void set_servos(void)
|
|
{
|
|
int16_t last_throttle = g.channel_throttle.radio_out;
|
|
|
|
if ((control_mode == MANUAL || control_mode == LEARNING) &&
|
|
(g.skid_steer_out == g.skid_steer_in)) {
|
|
// do a direct pass through of radio values
|
|
g.channel_steer.radio_out = hal.rcin->read(CH_STEER);
|
|
g.channel_throttle.radio_out = hal.rcin->read(CH_THROTTLE);
|
|
} else {
|
|
g.channel_steer.calc_pwm();
|
|
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out,
|
|
g.throttle_min.get(),
|
|
g.throttle_max.get());
|
|
// convert 0 to 100% into PWM
|
|
g.channel_throttle.calc_pwm();
|
|
|
|
// limit throttle movement speed
|
|
throttle_slew_limit(last_throttle);
|
|
|
|
if (g.skid_steer_out) {
|
|
// convert the two radio_out values to skid steering values
|
|
/*
|
|
mixing rule:
|
|
steering = motor1 - motor2
|
|
throttle = 0.5*(motor1 + motor2)
|
|
motor1 = throttle + 0.5*steering
|
|
motor2 = throttle - 0.5*steering
|
|
*/
|
|
float steering_scaled = g.channel_steer.norm_output();
|
|
float throttle_scaled = g.channel_throttle.norm_output();
|
|
float motor1 = throttle_scaled + 0.5*steering_scaled;
|
|
float motor2 = throttle_scaled - 0.5*steering_scaled;
|
|
g.channel_steer.servo_out = 4500*motor1;
|
|
g.channel_throttle.servo_out = 100*motor2;
|
|
g.channel_steer.calc_pwm();
|
|
g.channel_throttle.calc_pwm();
|
|
}
|
|
}
|
|
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
// send values to the PWM timers for output
|
|
// ----------------------------------------
|
|
hal.rcout->write(CH_1, g.channel_steer.radio_out); // send to Servos
|
|
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos
|
|
|
|
// Route configurable aux. functions to their respective servos
|
|
g.rc_2.output_ch(CH_2);
|
|
g.rc_4.output_ch(CH_4);
|
|
g.rc_5.output_ch(CH_5);
|
|
g.rc_6.output_ch(CH_6);
|
|
g.rc_7.output_ch(CH_7);
|
|
g.rc_8.output_ch(CH_8);
|
|
|
|
#endif
|
|
}
|
|
|
|
static bool demoing_servos;
|
|
|
|
static void demo_servos(uint8_t i) {
|
|
|
|
while(i > 0) {
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
|
|
demoing_servos = true;
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
|
hal.rcout->write(1, 1400);
|
|
mavlink_delay(400);
|
|
hal.rcout->write(1, 1600);
|
|
mavlink_delay(200);
|
|
hal.rcout->write(1, 1500);
|
|
#endif
|
|
demoing_servos = false;
|
|
mavlink_delay(400);
|
|
i--;
|
|
}
|
|
}
|