mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
745b739ab7
this will be used in plane to make AHRS SYS_STATUS unhealthy if a user tries to fly with EKF enabled without a full 3D accel cal. Note that it doesn't rely on using AP_Param load() to detect that a value has been set, as some users are first doing a 3D cal then later doing a 1D cal. In that case load() was returning true and would give a false positive
306 lines
10 KiB
C++
306 lines
10 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#ifndef __AP_INERTIAL_SENSOR_H__
|
|
#define __AP_INERTIAL_SENSOR_H__
|
|
|
|
// Gyro and Accelerometer calibration criteria
|
|
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
|
|
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
|
|
|
|
/**
|
|
maximum number of INS instances available on this platform. If more
|
|
than 1 then redundent sensors may be available
|
|
*/
|
|
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
|
|
#define INS_MAX_INSTANCES 3
|
|
#define INS_MAX_BACKENDS 6
|
|
#else
|
|
#define INS_MAX_INSTANCES 1
|
|
#define INS_MAX_BACKENDS 1
|
|
#endif
|
|
|
|
|
|
#include <stdint.h>
|
|
#include <AP_HAL.h>
|
|
#include <AP_Math.h>
|
|
#include "AP_InertialSensor_UserInteract.h"
|
|
|
|
class AP_InertialSensor_Backend;
|
|
|
|
/* AP_InertialSensor is an abstraction for gyro and accel measurements
|
|
* which are correctly aligned to the body axes and scaled to SI units.
|
|
*
|
|
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt
|
|
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
|
|
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
|
|
*/
|
|
class AP_InertialSensor
|
|
{
|
|
friend class AP_InertialSensor_Backend;
|
|
|
|
public:
|
|
AP_InertialSensor();
|
|
|
|
enum Start_style {
|
|
COLD_START = 0,
|
|
WARM_START
|
|
};
|
|
|
|
// the rate that updates will be available to the application
|
|
enum Sample_rate {
|
|
RATE_50HZ,
|
|
RATE_100HZ,
|
|
RATE_200HZ,
|
|
RATE_400HZ
|
|
};
|
|
|
|
/// Perform startup initialisation.
|
|
///
|
|
/// Called to initialise the state of the IMU.
|
|
///
|
|
/// For COLD_START, implementations using real sensors can assume
|
|
/// that the airframe is stationary and nominally oriented.
|
|
///
|
|
/// For WARM_START, no assumptions should be made about the
|
|
/// orientation or motion of the airframe. Calibration should be
|
|
/// as for the previous COLD_START call.
|
|
///
|
|
/// @param style The initialisation startup style.
|
|
///
|
|
void init( Start_style style,
|
|
Sample_rate sample_rate);
|
|
|
|
/// Perform cold startup initialisation for just the accelerometers.
|
|
///
|
|
/// @note This should not be called unless ::init has previously
|
|
/// been called, as ::init may perform other work.
|
|
///
|
|
void init_accel();
|
|
|
|
|
|
/// Register a new gyro/accel driver, allocating an instance
|
|
/// number
|
|
uint8_t register_gyro(void);
|
|
uint8_t register_accel(void);
|
|
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
// perform accelerometer calibration including providing user instructions
|
|
// and feedback
|
|
bool calibrate_accel(AP_InertialSensor_UserInteract *interact,
|
|
float& trim_roll,
|
|
float& trim_pitch);
|
|
#endif
|
|
|
|
/// calibrated - returns true if the accelerometers have been calibrated
|
|
///
|
|
/// @note this should not be called while flying because it reads from the eeprom which can be slow
|
|
///
|
|
bool calibrated();
|
|
|
|
/// Perform cold-start initialisation for just the gyros.
|
|
///
|
|
/// @note This should not be called unless ::init has previously
|
|
/// been called, as ::init may perform other work
|
|
///
|
|
void init_gyro(void);
|
|
|
|
/// Fetch the current gyro values
|
|
///
|
|
/// @returns vector of rotational rates in radians/sec
|
|
///
|
|
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; }
|
|
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); }
|
|
void set_gyro(uint8_t instance, const Vector3f &gyro);
|
|
|
|
// set gyro offsets in radians/sec
|
|
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; }
|
|
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); }
|
|
|
|
/// Fetch the current accelerometer values
|
|
///
|
|
/// @returns vector of current accelerations in m/s/s
|
|
///
|
|
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; }
|
|
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); }
|
|
void set_accel(uint8_t instance, const Vector3f &accel);
|
|
|
|
uint32_t get_gyro_error_count(uint8_t i) const { return _gyro_error_count[i]; }
|
|
uint32_t get_accel_error_count(uint8_t i) const { return _accel_error_count[i]; }
|
|
|
|
// multi-device interface
|
|
bool get_gyro_health(uint8_t instance) const { return _gyro_healthy[instance]; }
|
|
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); }
|
|
bool get_gyro_health_all(void) const;
|
|
uint8_t get_gyro_count(void) const { return _gyro_count; }
|
|
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; }
|
|
bool gyro_calibrated_ok_all() const;
|
|
|
|
bool get_accel_health(uint8_t instance) const { return _accel_healthy[instance]; }
|
|
bool get_accel_health(void) const { return get_accel_health(_primary_accel); }
|
|
bool get_accel_health_all(void) const;
|
|
uint8_t get_accel_count(void) const { return _accel_count; };
|
|
|
|
// get accel offsets in m/s/s
|
|
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; }
|
|
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); }
|
|
|
|
// get accel scale
|
|
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; }
|
|
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); }
|
|
|
|
/* get_delta_time returns the time period in seconds
|
|
* overwhich the sensor data was collected
|
|
*/
|
|
float get_delta_time() const { return _delta_time; }
|
|
|
|
// return the maximum gyro drift rate in radians/s/s. This
|
|
// depends on what gyro chips are being used
|
|
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); }
|
|
|
|
// update gyro and accel values from accumulated samples
|
|
void update(void);
|
|
|
|
// wait for a sample to be available
|
|
void wait_for_sample(void);
|
|
|
|
// class level parameters
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
// set overall board orientation
|
|
void set_board_orientation(enum Rotation orientation) {
|
|
_board_orientation = orientation;
|
|
}
|
|
|
|
// override default filter frequency
|
|
void set_default_filter(float filter_hz) {
|
|
if (!_mpu6000_filter.load()) {
|
|
_mpu6000_filter.set(filter_hz);
|
|
}
|
|
}
|
|
|
|
// get_filter - return filter in hz
|
|
uint8_t get_filter() const { return _mpu6000_filter.get(); }
|
|
|
|
// return the selected sample rate
|
|
Sample_rate get_sample_rate(void) const { return _sample_rate; }
|
|
|
|
uint16_t error_count(void) const { return 0; }
|
|
bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
|
|
|
|
uint8_t get_primary_accel(void) const { return 0; }
|
|
|
|
// enable HIL mode
|
|
void set_hil_mode(void) { _hil_mode = true; }
|
|
|
|
private:
|
|
|
|
// load backend drivers
|
|
void _add_backend(AP_InertialSensor_Backend *(detect)(AP_InertialSensor &));
|
|
void _detect_backends(void);
|
|
|
|
// accel and gyro initialisation
|
|
void _init_accel();
|
|
void _init_gyro();
|
|
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
// Calibration routines borrowed from Rolfe Schmidt
|
|
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
|
|
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
|
|
|
|
// _calibrate_accel - perform low level accel calibration
|
|
bool _calibrate_accel(Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale);
|
|
void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
|
|
void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
|
|
void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
|
|
void _calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch);
|
|
#endif
|
|
|
|
// check if we have 3D accel calibration
|
|
void check_3D_calibration(void);
|
|
|
|
// save parameters to eeprom
|
|
void _save_parameters();
|
|
|
|
// backend objects
|
|
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS];
|
|
|
|
// number of gyros and accel drivers. Note that most backends
|
|
// provide both accel and gyro data, so will increment both
|
|
// counters on initialisation
|
|
uint8_t _gyro_count;
|
|
uint8_t _accel_count;
|
|
uint8_t _backend_count;
|
|
|
|
// the selected sample rate
|
|
Sample_rate _sample_rate;
|
|
|
|
// Most recent accelerometer reading
|
|
Vector3f _accel[INS_MAX_INSTANCES];
|
|
|
|
// Most recent gyro reading
|
|
Vector3f _gyro[INS_MAX_INSTANCES];
|
|
|
|
// product id
|
|
AP_Int16 _product_id;
|
|
|
|
// accelerometer scaling and offsets
|
|
AP_Vector3f _accel_scale[INS_MAX_INSTANCES];
|
|
AP_Vector3f _accel_offset[INS_MAX_INSTANCES];
|
|
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES];
|
|
|
|
// filtering frequency (0 means default)
|
|
AP_Int8 _mpu6000_filter;
|
|
|
|
// board orientation from AHRS
|
|
enum Rotation _board_orientation;
|
|
|
|
// calibrated_ok flags
|
|
bool _gyro_cal_ok[INS_MAX_INSTANCES];
|
|
|
|
// primary accel and gyro
|
|
uint8_t _primary_gyro;
|
|
uint8_t _primary_accel;
|
|
|
|
// has wait_for_sample() found a sample?
|
|
bool _have_sample:1;
|
|
|
|
// are we in HIL mode?
|
|
bool _hil_mode:1;
|
|
|
|
// do we have offsets/scaling from a 3D calibration?
|
|
bool _have_3D_calibration:1;
|
|
|
|
// the delta time in seconds for the last sample
|
|
float _delta_time;
|
|
|
|
// last time a wait_for_sample() returned a sample
|
|
uint32_t _last_sample_usec;
|
|
|
|
// target time for next wait_for_sample() return
|
|
uint32_t _next_sample_usec;
|
|
|
|
// time between samples in microseconds
|
|
uint32_t _sample_period_usec;
|
|
|
|
// health of gyros and accels
|
|
bool _gyro_healthy[INS_MAX_INSTANCES];
|
|
bool _accel_healthy[INS_MAX_INSTANCES];
|
|
|
|
uint32_t _accel_error_count[INS_MAX_INSTANCES];
|
|
uint32_t _gyro_error_count[INS_MAX_INSTANCES];
|
|
};
|
|
|
|
#include "AP_InertialSensor_Backend.h"
|
|
#include "AP_InertialSensor_MPU6000.h"
|
|
#include "AP_InertialSensor_PX4.h"
|
|
#include "AP_InertialSensor_Oilpan.h"
|
|
#include "AP_InertialSensor_MPU9250.h"
|
|
#include "AP_InertialSensor_L3G4200D.h"
|
|
#include "AP_InertialSensor_Flymaple.h"
|
|
#include "AP_InertialSensor_MPU9150.h"
|
|
#include "AP_InertialSensor_HIL.h"
|
|
#include "AP_InertialSensor_UserInteract_Stream.h"
|
|
#include "AP_InertialSensor_UserInteract_MAVLink.h"
|
|
|
|
#endif // __AP_INERTIAL_SENSOR_H__
|