mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 10:08:28 -04:00
185 lines
6.4 KiB
C++
185 lines
6.4 KiB
C++
#include "Sub.h"
|
|
|
|
// enable_motor_output() - enable and output lowest possible value to motors
|
|
void Sub::enable_motor_output()
|
|
{
|
|
motors.output_min();
|
|
}
|
|
|
|
// motors_output - send output to motors library which will adjust and send to ESCs and servos
|
|
void Sub::motors_output()
|
|
{
|
|
// Motor detection mode controls the thrusters directly
|
|
if (control_mode == Mode::Number::MOTOR_DETECT){
|
|
return;
|
|
}
|
|
// check if we are performing the motor test
|
|
if (ap.motor_test) {
|
|
verify_motor_test();
|
|
} else {
|
|
motors.set_interlock(true);
|
|
SRV_Channels::cork();
|
|
SRV_Channels::calc_pwm();
|
|
SRV_Channels::output_ch_all();
|
|
motors.output();
|
|
SRV_Channels::push();
|
|
}
|
|
}
|
|
|
|
// Initialize new style motor test
|
|
// Perform checks to see if it is ok to begin the motor test
|
|
// Returns true if motor test has begun
|
|
bool Sub::init_motor_test()
|
|
{
|
|
uint32_t tnow = AP_HAL::millis();
|
|
|
|
// Ten second cooldown period required with no do_set_motor requests required
|
|
// after failure.
|
|
if (tnow < last_do_motor_test_fail_ms + 10000 && last_do_motor_test_fail_ms > 0) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "10 second cooldown required after motor test");
|
|
return false;
|
|
}
|
|
|
|
// check if safety switch has been pushed
|
|
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
|
|
gcs().send_text(MAV_SEVERITY_CRITICAL,"Disarm hardware safety switch before testing motors.");
|
|
return false;
|
|
}
|
|
|
|
// Make sure we are on the ground
|
|
if (!motors.armed()) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Arm motors before testing motors.");
|
|
return false;
|
|
}
|
|
|
|
enable_motor_output(); // set all motor outputs to zero
|
|
ap.motor_test = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Verify new style motor test
|
|
// The motor test will fail if the interval between received
|
|
// MAV_CMD_DO_SET_MOTOR requests exceeds a timeout period
|
|
// Returns true if it is ok to proceed with new style motor test
|
|
bool Sub::verify_motor_test()
|
|
{
|
|
bool pass = true;
|
|
|
|
// Require at least 2 Hz incoming do_set_motor requests
|
|
if (AP_HAL::millis() > last_do_motor_test_ms + 500) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "Motor test timed out!");
|
|
pass = false;
|
|
}
|
|
|
|
if (!pass) {
|
|
ap.motor_test = false;
|
|
AP::arming().disarm(AP_Arming::Method::MOTORTEST);
|
|
last_do_motor_test_fail_ms = AP_HAL::millis();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sub::handle_do_motor_test(mavlink_command_int_t command) {
|
|
last_do_motor_test_ms = AP_HAL::millis();
|
|
|
|
// If we are not already testing motors, initialize test
|
|
static uint32_t tLastInitializationFailed = 0;
|
|
if(!ap.motor_test) {
|
|
// Do not allow initializations attempt under 2 seconds
|
|
// If one fails, we need to give the user time to fix the issue
|
|
// instead of spamming error messages
|
|
if (AP_HAL::millis() > (tLastInitializationFailed + 2000)) {
|
|
if (!init_motor_test()) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "motor test initialization failed!");
|
|
tLastInitializationFailed = AP_HAL::millis();
|
|
return false; // init fail
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
float motor_number = command.param1;
|
|
float throttle_type = command.param2;
|
|
float throttle = command.param3;
|
|
// float timeout_s = command.param4; // not used
|
|
// float motor_count = command.param5; // not used
|
|
const uint32_t test_type = command.y;
|
|
|
|
if (test_type != MOTOR_TEST_ORDER_BOARD) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "bad test type %0.2f", (double)test_type);
|
|
return false; // test type not supported here
|
|
}
|
|
|
|
if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PILOT)) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "bad throttle type %0.2f", (double)throttle_type);
|
|
|
|
return false; // throttle type not supported here
|
|
}
|
|
|
|
if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PWM)) {
|
|
return motors.output_test_num(motor_number, throttle); // true if motor output is set
|
|
}
|
|
|
|
if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PERCENT)) {
|
|
throttle = constrain_float(throttle, 0.0f, 100.0f);
|
|
throttle = channel_throttle->get_radio_min() + throttle / 100.0f * (channel_throttle->get_radio_max() - channel_throttle->get_radio_min());
|
|
return motors.output_test_num(motor_number, throttle); // true if motor output is set
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// translate wpnav roll/pitch outputs to lateral/forward
|
|
void Sub::translate_wpnav_rp(float &lateral_out, float &forward_out)
|
|
{
|
|
// get roll and pitch targets in centidegrees
|
|
int32_t lateral = wp_nav.get_roll();
|
|
int32_t forward = -wp_nav.get_pitch(); // output is reversed
|
|
|
|
// constrain target forward/lateral values
|
|
// The outputs of wp_nav.get_roll and get_pitch should already be constrained to these values
|
|
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
|
|
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
|
|
|
|
// Normalize
|
|
lateral_out = (float)lateral/(float)aparm.angle_max;
|
|
forward_out = (float)forward/(float)aparm.angle_max;
|
|
}
|
|
|
|
// translate wpnav roll/pitch outputs to lateral/forward
|
|
void Sub::translate_circle_nav_rp(float &lateral_out, float &forward_out)
|
|
{
|
|
// get roll and pitch targets in centidegrees
|
|
int32_t lateral = circle_nav.get_roll();
|
|
int32_t forward = -circle_nav.get_pitch(); // output is reversed
|
|
|
|
// constrain target forward/lateral values
|
|
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
|
|
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
|
|
|
|
// Normalize
|
|
lateral_out = (float)lateral/(float)aparm.angle_max;
|
|
forward_out = (float)forward/(float)aparm.angle_max;
|
|
}
|
|
|
|
// translate pos_control roll/pitch outputs to lateral/forward
|
|
void Sub::translate_pos_control_rp(float &lateral_out, float &forward_out)
|
|
{
|
|
// get roll and pitch targets in centidegrees
|
|
int32_t lateral = pos_control.get_roll_cd();
|
|
int32_t forward = -pos_control.get_pitch_cd(); // output is reversed
|
|
|
|
// constrain target forward/lateral values
|
|
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
|
|
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
|
|
|
|
// Normalize
|
|
lateral_out = (float)lateral/(float)aparm.angle_max;
|
|
forward_out = (float)forward/(float)aparm.angle_max;
|
|
}
|