ardupilot/libraries/AP_Proximity/AP_Proximity_TeraRangerTowerEvo.cpp

182 lines
6.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_Proximity_TeraRangerTowerEvo.h"
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Math/crc.h>
#include <ctype.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/*
The constructor also initialises the proximity sensor. Note that this
constructor is not called until detect() returns true, so we
already know that we should setup the proximity sensor
*/
AP_Proximity_TeraRangerTowerEvo::AP_Proximity_TeraRangerTowerEvo(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state,
AP_SerialManager &serial_manager) :
AP_Proximity_Backend(_frontend, _state)
{
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0);
if (uart != nullptr) {
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0));
}
_last_request_sent_ms = AP_HAL::millis();
}
// detect if a TeraRanger Tower proximity sensor is connected by looking for a configured serial port
bool AP_Proximity_TeraRangerTowerEvo::detect(AP_SerialManager &serial_manager)
{
AP_HAL::UARTDriver *uart = nullptr;
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0);
return uart != nullptr;
}
// update the state of the sensor
void AP_Proximity_TeraRangerTowerEvo::update(void)
{
if (uart == nullptr) {
return;
}
//initialize the sensor
if(_current_init_state != InitState::InitState_Finished)
{
initialise_modes();
}
// process incoming messages
read_sensor_data();
// check for timeout and set health status
if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_TRTOWER_TIMEOUT_MS)) {
set_status(AP_Proximity::Proximity_NoData);
} else {
set_status(AP_Proximity::Proximity_Good);
}
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity_TeraRangerTowerEvo::distance_max() const
{
return 8.0f;
}
float AP_Proximity_TeraRangerTowerEvo::distance_min() const
{
return 0.75f;
}
void AP_Proximity_TeraRangerTowerEvo::initialise_modes()
{
if((AP_HAL::millis() - _last_request_sent_ms) < _mode_request_delay) {
return;
}
if (_current_init_state == InitState_Printout) {
set_mode(BINARY_MODE, 4);
_current_init_state = InitState_Sequence;
}
if (_current_init_state == InitState_Sequence) {
//set tower mode - 4 sensors are triggered at once with 90 deg angle between each sensor
set_mode(TOWER_MODE, 4);
_current_init_state = InitState_Rate;
} else if (_current_init_state == InitState_Rate) {
//set update rate of the sensor.
set_mode(REFRESH_50_HZ, 5);
_current_init_state = InitState_StreamStart;
} else if (_current_init_state == InitState_StreamStart) {
set_mode(ACTIVATE_STREAM, 5);
_current_init_state = InitState_Finished;
}
}
void AP_Proximity_TeraRangerTowerEvo::set_mode(const uint8_t *c, int length)
{
uart->write(c, length);
_last_request_sent_ms = AP_HAL::millis();
}
// check for replies from sensor, returns true if at least one message was processed
bool AP_Proximity_TeraRangerTowerEvo::read_sensor_data()
{
if (uart == nullptr) {
return false;
}
uint16_t message_count = 0;
int16_t nbytes = uart->available();
while (nbytes-- > 0) {
char c = uart->read();
if (c == 'T' ) {
buffer_count = 0;
}
buffer[buffer_count++] = c;
// we should always read 19 bytes THxxxxxxxxxxxxxxxxMC
if (buffer_count >= 20){
buffer_count = 0;
//check if message has right CRC
if (crc_crc8(buffer, 19) == buffer[19]){
uint16_t d1 = process_distance(buffer[2], buffer[3]);
uint16_t d2 = process_distance(buffer[4], buffer[5]);
uint16_t d3 = process_distance(buffer[6], buffer[7]);
uint16_t d4 = process_distance(buffer[8], buffer[9]);
uint16_t d5 = process_distance(buffer[10], buffer[11]);
uint16_t d6 = process_distance(buffer[12], buffer[13]);
uint16_t d7 = process_distance(buffer[14], buffer[15]);
uint16_t d8 = process_distance(buffer[16], buffer[17]);
update_sector_data(0, d1);
update_sector_data(45, d8);
update_sector_data(90, d7);
update_sector_data(135, d6);
update_sector_data(180, d5);
update_sector_data(225, d4);
update_sector_data(270, d3);
update_sector_data(315, d2);
message_count++;
}
}
}
return (message_count > 0);
}
uint16_t AP_Proximity_TeraRangerTowerEvo::process_distance(uint8_t buf1, uint8_t buf2)
{
return (buf1 << 8) + buf2;
}
// process reply
void AP_Proximity_TeraRangerTowerEvo::update_sector_data(int16_t angle_deg, uint16_t distance_cm)
{
uint8_t sector;
if (convert_angle_to_sector(angle_deg, sector)) {
_angle[sector] = angle_deg;
_distance[sector] = ((float) distance_cm) / 1000;
//check for target too far, target too close and sensor not connected
_distance_valid[sector] = distance_cm != 0xffff && distance_cm != 0x0000 && distance_cm != 0x0001;
_last_distance_received_ms = AP_HAL::millis();
// update boundary used for avoidance
update_boundary_for_sector(sector);
}
}