ardupilot/libraries/AP_Motors/AP_MotorsHeli_Single.cpp

567 lines
23 KiB
C++

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include <SRV_Channel/SRV_Channel.h>
#include "AP_MotorsHeli_Single.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// Indices 1-3 were used by servo position params and should not be used
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
// @User: Standard
AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO),
// Indice 5 was used by SWASH_TYPE and should not be used
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM in microseconds sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain_std, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN),
// Index 7 was used for phase angle and should not be used
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0),
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
// @Values: 0:NoFlybar,1:Flybar
// @User: Standard
AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed in PWM microseconds. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTORS_HELI_SINGLE_DDVP_SPEED_DEFAULT),
// @Param: GYR_GAIN_ACRO
// @DisplayName: External Gyro Gain for ACRO
// @Description: PWM in microseconds sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN_ACRO", 11, AP_MotorsHeli_Single, _ext_gyro_gain_acro, 0),
// Indices 16-19 were used by RSC_PWM_MIN, RSC_PWM_MAX, RSC_PWM_REV, and COL_CTRL_DIR and should not be used
// @Group: H3_SW_
// @Path: AP_MotorsHeli_Swash.cpp
AP_SUBGROUPINFO(_swashplate, "SW_", 20, AP_MotorsHeli_Single, AP_MotorsHeli_Swash),
AP_GROUPEND
};
#define YAW_SERVO_MAX_ANGLE 4500
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4;
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
mask |= 1U << (AP_MOTORS_MOT_5);
}
rc_set_freq(mask, _speed_hz);
}
// init_outputs - initialise Servo/PWM ranges and endpoints
bool AP_MotorsHeli_Single::init_outputs()
{
if (!_flags.initialised_ok) {
// map primary swash servos
for (uint8_t i=0; i<AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS; i++) {
add_motor_num(CH_1+i);
}
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
add_motor_num(CH_5);
}
// yaw servo
add_motor_num(CH_4);
// initialize main rotor servo
_main_rotor.init_servo();
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
_tail_rotor.init_servo();
} else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// external gyro output
add_motor_num(AP_MOTORS_HELI_SINGLE_EXTGYRO);
}
}
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// External Gyro uses PWM output thus servo endpoints are forced
SRV_Channels::set_output_min_max(SRV_Channels::get_motor_function(AP_MOTORS_HELI_SINGLE_EXTGYRO), 1000, 2000);
}
// reset swash servo range and endpoints
for (uint8_t i=0; i<AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS; i++) {
reset_swash_servo(SRV_Channels::get_motor_function(i));
}
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
reset_swash_servo(SRV_Channels::get_motor_function(4));
}
// yaw servo is an angle from -4500 to 4500
SRV_Channels::set_angle(SRV_Channel::k_motor4, YAW_SERVO_MAX_ANGLE);
_flags.initialised_ok = true;
return true;
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Single::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// swash servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// swash servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// swash servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// external gyro & tail servo
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
if (_acro_tail && _ext_gyro_gain_acro > 0) {
rc_write(AP_MOTORS_HELI_SINGLE_EXTGYRO, _ext_gyro_gain_acro);
} else {
rc_write(AP_MOTORS_HELI_SINGLE_EXTGYRO, _ext_gyro_gain_std);
}
}
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// main rotor
rc_write(AP_MOTORS_HELI_SINGLE_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Single::set_desired_rotor_speed(float desired_speed)
{
_main_rotor.set_desired_speed(desired_speed);
// always send desired speed to tail rotor control, will do nothing if not DDVP not enabled
_tail_rotor.set_desired_speed(_direct_drive_tailspeed*0.001f);
}
// set_rotor_rpm - used for governor with speed sensor
void AP_MotorsHeli_Single::set_rpm(float rotor_rpm)
{
_main_rotor.set_rotor_rpm(rotor_rpm);
}
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single::calculate_armed_scalars()
{
// Set common RSC variables
_main_rotor.set_ramp_time(_rsc_ramp_time);
_main_rotor.set_runup_time(_rsc_runup_time);
_main_rotor.set_critical_speed(_rsc_critical*0.001f);
_main_rotor.set_idle_output(_rsc_idle_output*0.001f);
_main_rotor.set_slewrate(_rsc_slewrate);
// Set rsc mode specific parameters
if (_rsc_mode == ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT) {
_main_rotor.set_throttle_curve(_rsc_thrcrv.get_thrcrv());
} else if (_rsc_mode == ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) {
_main_rotor.set_throttle_curve(_rsc_thrcrv.get_thrcrv());
_main_rotor.set_governor_disengage(_rsc_gov.get_disengage()*0.01f);
_main_rotor.set_governor_droop_response(_rsc_gov.get_droop_response()*0.01f);
_main_rotor.set_governor_reference(_rsc_gov.get_reference());
_main_rotor.set_governor_range(_rsc_gov.get_range());
_main_rotor.set_governor_thrcurve(_rsc_gov.get_thrcurve()*0.01f);
}
}
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
// configure swashplate and update scalars
_swashplate.configure();
_swashplate.calculate_roll_pitch_collective_factors();
// send setpoints to main rotor controller and trigger recalculation of scalars
_main_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
enable_rsc_parameters();
calculate_armed_scalars();
// send setpoints to DDVP rotor controller and trigger recalculation of scalars
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
_tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_SPEED_SETPOINT);
_tail_rotor.set_ramp_time(_rsc_ramp_time);
_tail_rotor.set_runup_time(_rsc_runup_time);
_tail_rotor.set_critical_speed(_rsc_critical*0.001f);
_tail_rotor.set_idle_output(_rsc_idle_output*0.001f);
} else {
_tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_DISABLED);
_tail_rotor.set_ramp_time(0);
_tail_rotor.set_runup_time(0);
_tail_rotor.set_critical_speed(0);
_tail_rotor.set_idle_output(0);
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Single::get_motor_mask()
{
// heli uses channels 1,2,3,4 and 8
// setup fast channels
uint32_t mask = 1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_RSC;
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
mask |= 1U << 4;
}
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
mask |= 1U << AP_MOTORS_HELI_SINGLE_EXTGYRO;
}
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
mask |= 1U << AP_MOTORS_HELI_SINGLE_TAILRSC;
}
return rc_map_mask(mask);
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Single::update_motor_control(RotorControlState state)
{
// Send state update to motors
_tail_rotor.output(state);
_main_rotor.output(state);
if (state == ROTOR_CONTROL_STOP){
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
} else {
// else if armed, set engine run enable output to run position
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
}
// Check if both rotors are run-up, tail rotor controller always returns true if not enabled
_heliflags.rotor_runup_complete = ( _main_rotor.is_runup_complete() && _tail_rotor.is_runup_complete() );
}
//
// move_actuators - moves swash plate and tail rotor
// - expected ranges:
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
//
void AP_MotorsHeli_Single::move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out)
{
float yaw_offset = 0.0f;
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
if (_heliflags.inverted_flight) {
coll_in = 1 - coll_in;
}
// rescale roll_out and pitch_out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified cyclic_max
// coming into this equation at 4500 or less
float total_out = norm(pitch_out, roll_out);
if (total_out > (_cyclic_max/4500.0f)) {
float ratio = (float)(_cyclic_max/4500.0f) / total_out;
roll_out *= ratio;
pitch_out *= ratio;
limit.roll_pitch = true;
}
// constrain collective input
float collective_out = coll_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < _collective_mid_pct) {
collective_out = _collective_mid_pct;
limit.throttle_lower = true;
}
// if servo output not in manual mode, process pre-compensation factors
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
// rudder feed forward based on collective
// the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque
// also not required if we are using external gyro
if ((_main_rotor.get_control_output() > _main_rotor.get_idle_output()) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// sanity check collective_yaw_effect
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE);
// the 4.5 scaling factor is to bring the values in line with previous releases
yaw_offset = _collective_yaw_effect * fabsf(collective_out - _collective_mid_pct) / 4.5f;
}
} else {
yaw_offset = 0.0f;
}
// feed power estimate into main rotor controller
// ToDo: include tail rotor power?
// ToDo: add main rotor cyclic power?
_main_rotor.set_collective(fabsf(collective_out));
// scale collective pitch for swashplate servos
float collective_scalar = ((float)(_collective_max-_collective_min))*0.001f;
float collective_out_scaled = collective_out * collective_scalar + (_collective_min - 1000)*0.001f;
// get servo positions from swashplate library
_servo1_out = _swashplate.get_servo_out(CH_1,pitch_out,roll_out,collective_out_scaled);
_servo2_out = _swashplate.get_servo_out(CH_2,pitch_out,roll_out,collective_out_scaled);
_servo3_out = _swashplate.get_servo_out(CH_3,pitch_out,roll_out,collective_out_scaled);
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
_servo5_out = _swashplate.get_servo_out(CH_4,pitch_out,roll_out,collective_out_scaled);
}
// update the yaw rate using the tail rotor/servo
move_yaw(yaw_out + yaw_offset);
}
// move_yaw
void AP_MotorsHeli_Single::move_yaw(float yaw_out)
{
// sanity check yaw_out
if (yaw_out < -1.0f) {
yaw_out = -1.0f;
limit.yaw = true;
}
if (yaw_out > 1.0f) {
yaw_out = 1.0f;
limit.yaw = true;
}
_servo4_out = yaw_out;
}
void AP_MotorsHeli_Single::output_to_motors()
{
if (!_flags.initialised_ok) {
return;
}
// actually move the servos. PWM is sent based on nominal 1500 center. servo output shifts center based on trim value.
rc_write_swash(AP_MOTORS_MOT_1, _servo1_out);
rc_write_swash(AP_MOTORS_MOT_2, _servo2_out);
rc_write_swash(AP_MOTORS_MOT_3, _servo3_out);
// get servo positions from swashplate library and write to servo for 4 servo of 4 servo swashplate
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
rc_write_swash(AP_MOTORS_MOT_5, _servo5_out);
}
if (_tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
rc_write_angle(AP_MOTORS_MOT_4, _servo4_out * YAW_SERVO_MAX_ANGLE);
}
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// output gain to exernal gyro
if (_acro_tail && _ext_gyro_gain_acro > 0) {
rc_write(AP_MOTORS_HELI_SINGLE_EXTGYRO, 1000 + _ext_gyro_gain_acro);
} else {
rc_write(AP_MOTORS_HELI_SINGLE_EXTGYRO, 1000 + _ext_gyro_gain_std);
}
}
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
// sends minimum values out to the motors
update_motor_control(ROTOR_CONTROL_STOP);
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
rc_write_angle(AP_MOTORS_MOT_4, -YAW_SERVO_MAX_ANGLE);
}
break;
case SpoolState::GROUND_IDLE:
// sends idle output to motors when armed. rotor could be static or turning (autorotation)
update_motor_control(ROTOR_CONTROL_IDLE);
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
rc_write_angle(AP_MOTORS_MOT_4, -YAW_SERVO_MAX_ANGLE);
}
break;
case SpoolState::SPOOLING_UP:
case SpoolState::THROTTLE_UNLIMITED:
// set motor output based on thrust requests
update_motor_control(ROTOR_CONTROL_ACTIVE);
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
// constrain output so that motor never fully stops
_servo4_out = constrain_float(_servo4_out, -0.9f, 1.0f);
// output yaw servo to tail rsc
rc_write_angle(AP_MOTORS_MOT_4, _servo4_out * YAW_SERVO_MAX_ANGLE);
}
break;
case SpoolState::SPOOLING_DOWN:
// sends idle output to motors and wait for rotor to stop
update_motor_control(ROTOR_CONTROL_IDLE);
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH){
rc_write_angle(AP_MOTORS_MOT_4, -YAW_SERVO_MAX_ANGLE);
}
break;
}
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Single::servo_test()
{
_servo_test_cycle_time += 1.0f / _loop_rate;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (1.0f / (_loop_rate / 2.0f));
_oscillate_angle += 8 * M_PI / _loop_rate;
_yaw_test = 0.5f * sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_roll_test = sinf(_oscillate_angle);
_pitch_test = cosf(_oscillate_angle);
_yaw_test = sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (1.0f / (_loop_rate / 2.0f));
_oscillate_angle += 8 * M_PI / _loop_rate;
_yaw_test = 0.5f * sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test += (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_yaw_test = sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test -= (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_yaw_test = sinf(_oscillate_angle);
} else { // reset cycle
_servo_test_cycle_time = 0.0f;
_oscillate_angle = 0.0f;
_collective_test = 0.0f;
_roll_test = 0.0f;
_pitch_test = 0.0f;
_yaw_test = 0.0f;
// decrement servo test cycle counter at the end of the cycle
if (_servo_test_cycle_counter > 0){
_servo_test_cycle_counter--;
}
}
// over-ride servo commands to move servos through defined ranges
_throttle_filter.reset(constrain_float(_collective_test, 0.0f, 1.0f));
_roll_in = constrain_float(_roll_test, -1.0f, 1.0f);
_pitch_in = constrain_float(_pitch_test, -1.0f, 1.0f);
_yaw_in = constrain_float(_yaw_test, -1.0f, 1.0f);
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli_Single::parameter_check(bool display_msg) const
{
// returns false if Phase Angle is outside of range for H3 swashplate
if (_swashplate.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate.get_phase_angle() > 30 || _swashplate.get_phase_angle() < -30)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_H3_PHANG out of range");
}
return false;
}
// returns false if Acro External Gyro Gain is outside of range
if ((_ext_gyro_gain_acro < 0) || (_ext_gyro_gain_acro > 1000)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN_ACRO out of range");
}
return false;
}
// returns false if Standard External Gyro Gain is outside of range
if ((_ext_gyro_gain_std < 0) || (_ext_gyro_gain_std > 1000)){
if (display_msg) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN out of range");
}
return false;
}
// check parent class parameters
return AP_MotorsHeli::parameter_check(display_msg);
}