ardupilot/ArduPlane/navigation.pde
Andrew Tridgell 7aa360b176 Plane: added relative_altitude helper functions
prevents some code duplication
2013-07-10 14:04:22 +10:00

213 lines
6.3 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// set the nav_controller pointer to the right controller
static void set_nav_controller(void)
{
switch ((AP_Navigation::ControllerType)g.nav_controller.get()) {
case AP_Navigation::CONTROLLER_L1:
nav_controller = &L1_controller;
break;
}
}
/*
reset the total loiter angle
*/
static void loiter_angle_reset(void)
{
loiter.sum_cd = 0;
loiter.total_cd = 0;
}
/*
update the total angle we have covered in a loiter. Used to support
commands to do N circles of loiter
*/
static void loiter_angle_update(void)
{
int32_t target_bearing_cd = nav_controller->target_bearing_cd();
int32_t loiter_delta_cd;
if (loiter.sum_cd == 0) {
// use 1 cd for initial delta
loiter_delta_cd = 1;
} else {
loiter_delta_cd = target_bearing_cd - loiter.old_target_bearing_cd;
}
loiter.old_target_bearing_cd = target_bearing_cd;
loiter_delta_cd = wrap_180_cd(loiter_delta_cd);
loiter.sum_cd += loiter_delta_cd;
}
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
static void navigate()
{
// allow change of nav controller mid-flight
set_nav_controller();
// do not navigate with corrupt data
// ---------------------------------
if (!have_position) {
return;
}
if (next_WP.lat == 0) {
return;
}
// waypoint distance from plane
// ----------------------------
wp_distance = get_distance(&current_loc, &next_WP);
if (wp_distance < 0) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("WP error - distance < 0"));
return;
}
// update total loiter angle
loiter_angle_update();
// control mode specific updates to navigation demands
// ---------------------------------------------------
update_navigation();
}
static void calc_airspeed_errors()
{
float aspeed_cm = airspeed.get_airspeed_cm();
// Normal airspeed target
target_airspeed_cm = g.airspeed_cruise_cm;
// FBW_B airspeed target
if (control_mode == FLY_BY_WIRE_B) {
target_airspeed_cm = ((int32_t)(aparm.flybywire_airspeed_max -
aparm.flybywire_airspeed_min) *
channel_throttle->servo_out) +
((int32_t)aparm.flybywire_airspeed_min * 100);
}
// Set target to current airspeed + ground speed undershoot,
// but only when this is faster than the target airspeed commanded
// above.
if (control_mode >= FLY_BY_WIRE_B && (g.min_gndspeed_cm > 0)) {
int32_t min_gnd_target_airspeed = aspeed_cm + groundspeed_undershoot;
if (min_gnd_target_airspeed > target_airspeed_cm)
target_airspeed_cm = min_gnd_target_airspeed;
}
// Bump up the target airspeed based on throttle nudging
if (control_mode >= AUTO && airspeed_nudge_cm > 0) {
target_airspeed_cm += airspeed_nudge_cm;
}
// Apply airspeed limit
if (target_airspeed_cm > (aparm.flybywire_airspeed_max * 100))
target_airspeed_cm = (aparm.flybywire_airspeed_max * 100);
airspeed_error_cm = target_airspeed_cm - aspeed_cm;
airspeed_energy_error = ((target_airspeed_cm * target_airspeed_cm) - (aspeed_cm*aspeed_cm))*0.00005;
}
static void calc_gndspeed_undershoot()
{
// Use the component of ground speed in the forward direction
// This prevents flyaway if wind takes plane backwards
if (g_gps && g_gps->status() >= GPS::GPS_OK_FIX_2D) {
Vector2f gndVel = ahrs.groundspeed_vector();
const Matrix3f &rotMat = ahrs.get_dcm_matrix();
Vector2f yawVect = Vector2f(rotMat.a.x,rotMat.b.x);
yawVect.normalize();
float gndSpdFwd = yawVect * gndVel;
groundspeed_undershoot = (g.min_gndspeed_cm > 0) ? (g.min_gndspeed_cm - gndSpdFwd*100) : 0;
}
}
static void calc_altitude_error()
{
if (control_mode == FLY_BY_WIRE_B) {
return;
}
if (offset_altitude_cm != 0) {
// control climb/descent rate
target_altitude_cm = next_WP.alt - (offset_altitude_cm*((float)(wp_distance-30) / (float)(wp_totalDistance-30)));
// stay within a certain range
if (prev_WP.alt > next_WP.alt) {
target_altitude_cm = constrain_int32(target_altitude_cm, next_WP.alt, prev_WP.alt);
}else{
target_altitude_cm = constrain_int32(target_altitude_cm, prev_WP.alt, next_WP.alt);
}
} else if (non_nav_command_ID != MAV_CMD_CONDITION_CHANGE_ALT) {
target_altitude_cm = next_WP.alt;
}
altitude_error_cm = target_altitude_cm - adjusted_altitude_cm();
}
static void update_loiter()
{
nav_controller->update_loiter(next_WP, abs(g.loiter_radius), loiter.direction);
}
static void setup_glide_slope(void)
{
// establish the distance we are travelling to the next waypoint,
// for calculating out rate of change of altitude
wp_totalDistance = get_distance(&current_loc, &next_WP);
wp_distance = wp_totalDistance;
/*
work out if we will gradually change altitude, or try to get to
the new altitude as quickly as possible.
*/
switch (control_mode) {
case RTL:
case GUIDED:
/* glide down slowly if above target altitude, but ascend more
rapidly if below it. See
https://github.com/diydrones/ardupilot/issues/39
*/
if (current_loc.alt > next_WP.alt) {
offset_altitude_cm = next_WP.alt - current_loc.alt;
} else {
offset_altitude_cm = 0;
}
break;
case AUTO:
if (prev_WP.id != MAV_CMD_NAV_TAKEOFF &&
prev_WP.alt != home.alt &&
(next_WP.id == MAV_CMD_NAV_WAYPOINT || next_WP.id == MAV_CMD_NAV_LAND)) {
offset_altitude_cm = next_WP.alt - prev_WP.alt;
} else {
offset_altitude_cm = 0;
}
break;
default:
offset_altitude_cm = 0;
break;
}
}
/*
return relative altitude in meters (relative to home)
*/
static float relative_altitude(void)
{
return (current_loc.alt - home.alt) * 0.01f;
}
/*
return relative altitude in centimeters, absolute value
*/
static int32_t relative_altitude_abs_cm(void)
{
return labs(current_loc.alt - home.alt);
}