mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 05:08:41 -04:00
1137 lines
41 KiB
C++
1137 lines
41 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Plane.h"
|
|
|
|
/*
|
|
get a speed scaling number for control surfaces. This is applied to
|
|
PIDs to change the scaling of the PID with speed. At high speed we
|
|
move the surfaces less, and at low speeds we move them more.
|
|
*/
|
|
float Plane::get_speed_scaler(void)
|
|
{
|
|
float aspeed, speed_scaler;
|
|
if (ahrs.airspeed_estimate(&aspeed)) {
|
|
if (aspeed > auto_state.highest_airspeed) {
|
|
auto_state.highest_airspeed = aspeed;
|
|
}
|
|
if (aspeed > 0) {
|
|
speed_scaler = g.scaling_speed / aspeed;
|
|
} else {
|
|
speed_scaler = 2.0;
|
|
}
|
|
speed_scaler = constrain_float(speed_scaler, 0.5f, 2.0f);
|
|
} else {
|
|
if (channel_throttle->servo_out > 0) {
|
|
speed_scaler = 0.5f + ((float)THROTTLE_CRUISE / channel_throttle->servo_out / 2.0f); // First order taylor expansion of square root
|
|
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
|
|
}else{
|
|
speed_scaler = 1.67f;
|
|
}
|
|
// This case is constrained tighter as we don't have real speed info
|
|
speed_scaler = constrain_float(speed_scaler, 0.6f, 1.67f);
|
|
}
|
|
return speed_scaler;
|
|
}
|
|
|
|
/*
|
|
return true if the current settings and mode should allow for stick mixing
|
|
*/
|
|
bool Plane::stick_mixing_enabled(void)
|
|
{
|
|
if (auto_throttle_mode) {
|
|
// we're in an auto mode. Check the stick mixing flag
|
|
if (g.stick_mixing != STICK_MIXING_DISABLED &&
|
|
geofence_stickmixing() &&
|
|
failsafe.state == FAILSAFE_NONE &&
|
|
!rc_failsafe_active()) {
|
|
// we're in an auto mode, and haven't triggered failsafe
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (failsafe.ch3_failsafe && g.short_fs_action == 2) {
|
|
// don't do stick mixing in FBWA glide mode
|
|
return false;
|
|
}
|
|
|
|
// non-auto mode. Always do stick mixing
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
this is the main roll stabilization function. It takes the
|
|
previously set nav_roll calculates roll servo_out to try to
|
|
stabilize the plane at the given roll
|
|
*/
|
|
void Plane::stabilize_roll(float speed_scaler)
|
|
{
|
|
if (fly_inverted()) {
|
|
// we want to fly upside down. We need to cope with wrap of
|
|
// the roll_sensor interfering with wrap of nav_roll, which
|
|
// would really confuse the PID code. The easiest way to
|
|
// handle this is to ensure both go in the same direction from
|
|
// zero
|
|
nav_roll_cd += 18000;
|
|
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000;
|
|
}
|
|
|
|
bool disable_integrator = false;
|
|
if (control_mode == STABILIZE && channel_roll->control_in != 0) {
|
|
disable_integrator = true;
|
|
}
|
|
channel_roll->servo_out = rollController.get_servo_out(nav_roll_cd - ahrs.roll_sensor,
|
|
speed_scaler,
|
|
disable_integrator);
|
|
}
|
|
|
|
/*
|
|
this is the main pitch stabilization function. It takes the
|
|
previously set nav_pitch and calculates servo_out values to try to
|
|
stabilize the plane at the given attitude.
|
|
*/
|
|
void Plane::stabilize_pitch(float speed_scaler)
|
|
{
|
|
int8_t force_elevator = takeoff_tail_hold();
|
|
if (force_elevator != 0) {
|
|
// we are holding the tail down during takeoff. Just covert
|
|
// from a percentage to a -4500..4500 centidegree angle
|
|
channel_pitch->servo_out = 45*force_elevator;
|
|
return;
|
|
}
|
|
int32_t demanded_pitch = nav_pitch_cd + g.pitch_trim_cd + channel_throttle->servo_out * g.kff_throttle_to_pitch;
|
|
bool disable_integrator = false;
|
|
if (control_mode == STABILIZE && channel_pitch->control_in != 0) {
|
|
disable_integrator = true;
|
|
}
|
|
channel_pitch->servo_out = pitchController.get_servo_out(demanded_pitch - ahrs.pitch_sensor,
|
|
speed_scaler,
|
|
disable_integrator);
|
|
}
|
|
|
|
/*
|
|
perform stick mixing on one channel
|
|
This type of stick mixing reduces the influence of the auto
|
|
controller as it increases the influence of the users stick input,
|
|
allowing the user full deflection if needed
|
|
*/
|
|
void Plane::stick_mix_channel(RC_Channel *channel, int16_t &servo_out)
|
|
{
|
|
float ch_inf;
|
|
|
|
ch_inf = (float)channel->radio_in - (float)channel->radio_trim;
|
|
ch_inf = fabsf(ch_inf);
|
|
ch_inf = min(ch_inf, 400.0f);
|
|
ch_inf = ((400.0f - ch_inf) / 400.0f);
|
|
servo_out *= ch_inf;
|
|
servo_out += channel->pwm_to_angle();
|
|
}
|
|
|
|
/*
|
|
this gives the user control of the aircraft in stabilization modes
|
|
*/
|
|
void Plane::stabilize_stick_mixing_direct()
|
|
{
|
|
if (!stick_mixing_enabled() ||
|
|
control_mode == ACRO ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == AUTOTUNE ||
|
|
control_mode == FLY_BY_WIRE_B ||
|
|
control_mode == CRUISE ||
|
|
control_mode == TRAINING) {
|
|
return;
|
|
}
|
|
stick_mix_channel(channel_roll, channel_roll->servo_out);
|
|
stick_mix_channel(channel_pitch, channel_pitch->servo_out);
|
|
}
|
|
|
|
/*
|
|
this gives the user control of the aircraft in stabilization modes
|
|
using FBW style controls
|
|
*/
|
|
void Plane::stabilize_stick_mixing_fbw()
|
|
{
|
|
if (!stick_mixing_enabled() ||
|
|
control_mode == ACRO ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == AUTOTUNE ||
|
|
control_mode == FLY_BY_WIRE_B ||
|
|
control_mode == CRUISE ||
|
|
control_mode == TRAINING ||
|
|
(control_mode == AUTO && g.auto_fbw_steer)) {
|
|
return;
|
|
}
|
|
// do FBW style stick mixing. We don't treat it linearly
|
|
// however. For inputs up to half the maximum, we use linear
|
|
// addition to the nav_roll and nav_pitch. Above that it goes
|
|
// non-linear and ends up as 2x the maximum, to ensure that
|
|
// the user can direct the plane in any direction with stick
|
|
// mixing.
|
|
float roll_input = channel_roll->norm_input();
|
|
if (roll_input > 0.5f) {
|
|
roll_input = (3*roll_input - 1);
|
|
} else if (roll_input < -0.5f) {
|
|
roll_input = (3*roll_input + 1);
|
|
}
|
|
nav_roll_cd += roll_input * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
|
|
float pitch_input = channel_pitch->norm_input();
|
|
if (fabsf(pitch_input) > 0.5f) {
|
|
pitch_input = (3*pitch_input - 1);
|
|
}
|
|
if (fly_inverted()) {
|
|
pitch_input = -pitch_input;
|
|
}
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd += pitch_input * aparm.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd += -(pitch_input * pitch_limit_min_cd);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
}
|
|
|
|
|
|
/*
|
|
stabilize the yaw axis. There are 3 modes of operation:
|
|
|
|
- hold a specific heading with ground steering
|
|
- rate controlled with ground steering
|
|
- yaw control for coordinated flight
|
|
*/
|
|
void Plane::stabilize_yaw(float speed_scaler)
|
|
{
|
|
if (control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) {
|
|
// in land final setup for ground steering
|
|
steering_control.ground_steering = true;
|
|
} else {
|
|
// otherwise use ground steering when no input control and we
|
|
// are below the GROUND_STEER_ALT
|
|
steering_control.ground_steering = (channel_roll->control_in == 0 &&
|
|
fabsf(relative_altitude()) < g.ground_steer_alt);
|
|
if (control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH) {
|
|
// don't use ground steering on landing approach
|
|
steering_control.ground_steering = false;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
first calculate steering_control.steering for a nose or tail
|
|
wheel.
|
|
We use "course hold" mode for the rudder when either in the
|
|
final stage of landing (when the wings are help level) or when
|
|
in course hold in FBWA mode (when we are below GROUND_STEER_ALT)
|
|
*/
|
|
if ((control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) ||
|
|
(steer_state.hold_course_cd != -1 && steering_control.ground_steering)) {
|
|
calc_nav_yaw_course();
|
|
} else if (steering_control.ground_steering) {
|
|
calc_nav_yaw_ground();
|
|
}
|
|
|
|
/*
|
|
now calculate steering_control.rudder for the rudder
|
|
*/
|
|
calc_nav_yaw_coordinated(speed_scaler);
|
|
}
|
|
|
|
|
|
/*
|
|
a special stabilization function for training mode
|
|
*/
|
|
void Plane::stabilize_training(float speed_scaler)
|
|
{
|
|
if (training_manual_roll) {
|
|
channel_roll->servo_out = channel_roll->control_in;
|
|
} else {
|
|
// calculate what is needed to hold
|
|
stabilize_roll(speed_scaler);
|
|
if ((nav_roll_cd > 0 && channel_roll->control_in < channel_roll->servo_out) ||
|
|
(nav_roll_cd < 0 && channel_roll->control_in > channel_roll->servo_out)) {
|
|
// allow user to get out of the roll
|
|
channel_roll->servo_out = channel_roll->control_in;
|
|
}
|
|
}
|
|
|
|
if (training_manual_pitch) {
|
|
channel_pitch->servo_out = channel_pitch->control_in;
|
|
} else {
|
|
stabilize_pitch(speed_scaler);
|
|
if ((nav_pitch_cd > 0 && channel_pitch->control_in < channel_pitch->servo_out) ||
|
|
(nav_pitch_cd < 0 && channel_pitch->control_in > channel_pitch->servo_out)) {
|
|
// allow user to get back to level
|
|
channel_pitch->servo_out = channel_pitch->control_in;
|
|
}
|
|
}
|
|
|
|
stabilize_yaw(speed_scaler);
|
|
}
|
|
|
|
|
|
/*
|
|
this is the ACRO mode stabilization function. It does rate
|
|
stabilization on roll and pitch axes
|
|
*/
|
|
void Plane::stabilize_acro(float speed_scaler)
|
|
{
|
|
float roll_rate = (channel_roll->control_in/4500.0f) * g.acro_roll_rate;
|
|
float pitch_rate = (channel_pitch->control_in/4500.0f) * g.acro_pitch_rate;
|
|
|
|
/*
|
|
check for special roll handling near the pitch poles
|
|
*/
|
|
if (g.acro_locking && is_zero(roll_rate)) {
|
|
/*
|
|
we have no roll stick input, so we will enter "roll locked"
|
|
mode, and hold the roll we had when the stick was released
|
|
*/
|
|
if (!acro_state.locked_roll) {
|
|
acro_state.locked_roll = true;
|
|
acro_state.locked_roll_err = 0;
|
|
} else {
|
|
acro_state.locked_roll_err += ahrs.get_gyro().x * G_Dt;
|
|
}
|
|
int32_t roll_error_cd = -ToDeg(acro_state.locked_roll_err)*100;
|
|
nav_roll_cd = ahrs.roll_sensor + roll_error_cd;
|
|
// try to reduce the integrated angular error to zero. We set
|
|
// 'stabilze' to true, which disables the roll integrator
|
|
channel_roll->servo_out = rollController.get_servo_out(roll_error_cd,
|
|
speed_scaler,
|
|
true);
|
|
} else {
|
|
/*
|
|
aileron stick is non-zero, use pure rate control until the
|
|
user releases the stick
|
|
*/
|
|
acro_state.locked_roll = false;
|
|
channel_roll->servo_out = rollController.get_rate_out(roll_rate, speed_scaler);
|
|
}
|
|
|
|
if (g.acro_locking && is_zero(pitch_rate)) {
|
|
/*
|
|
user has zero pitch stick input, so we lock pitch at the
|
|
point they release the stick
|
|
*/
|
|
if (!acro_state.locked_pitch) {
|
|
acro_state.locked_pitch = true;
|
|
acro_state.locked_pitch_cd = ahrs.pitch_sensor;
|
|
}
|
|
// try to hold the locked pitch. Note that we have the pitch
|
|
// integrator enabled, which helps with inverted flight
|
|
nav_pitch_cd = acro_state.locked_pitch_cd;
|
|
channel_pitch->servo_out = pitchController.get_servo_out(nav_pitch_cd - ahrs.pitch_sensor,
|
|
speed_scaler,
|
|
false);
|
|
} else {
|
|
/*
|
|
user has non-zero pitch input, use a pure rate controller
|
|
*/
|
|
acro_state.locked_pitch = false;
|
|
channel_pitch->servo_out = pitchController.get_rate_out(pitch_rate, speed_scaler);
|
|
}
|
|
|
|
/*
|
|
manual rudder for now
|
|
*/
|
|
steering_control.steering = steering_control.rudder = rudder_input;
|
|
}
|
|
|
|
/*
|
|
main stabilization function for all 3 axes
|
|
*/
|
|
void Plane::stabilize()
|
|
{
|
|
if (control_mode == MANUAL) {
|
|
// nothing to do
|
|
return;
|
|
}
|
|
float speed_scaler = get_speed_scaler();
|
|
|
|
if (control_mode == TRAINING) {
|
|
stabilize_training(speed_scaler);
|
|
} else if (control_mode == ACRO) {
|
|
stabilize_acro(speed_scaler);
|
|
} else {
|
|
if (g.stick_mixing == STICK_MIXING_FBW && control_mode != STABILIZE) {
|
|
stabilize_stick_mixing_fbw();
|
|
}
|
|
stabilize_roll(speed_scaler);
|
|
stabilize_pitch(speed_scaler);
|
|
if (g.stick_mixing == STICK_MIXING_DIRECT || control_mode == STABILIZE) {
|
|
stabilize_stick_mixing_direct();
|
|
}
|
|
stabilize_yaw(speed_scaler);
|
|
}
|
|
|
|
/*
|
|
see if we should zero the attitude controller integrators.
|
|
*/
|
|
if (channel_throttle->control_in == 0 &&
|
|
relative_altitude_abs_cm() < 500 &&
|
|
fabsf(barometer.get_climb_rate()) < 0.5f &&
|
|
gps.ground_speed() < 3) {
|
|
// we are low, with no climb rate, and zero throttle, and very
|
|
// low ground speed. Zero the attitude controller
|
|
// integrators. This prevents integrator buildup pre-takeoff.
|
|
rollController.reset_I();
|
|
pitchController.reset_I();
|
|
yawController.reset_I();
|
|
|
|
// if moving very slowly also zero the steering integrator
|
|
if (gps.ground_speed() < 1) {
|
|
steerController.reset_I();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Plane::calc_throttle()
|
|
{
|
|
if (aparm.throttle_cruise <= 1) {
|
|
// user has asked for zero throttle - this may be done by a
|
|
// mission which wants to turn off the engine for a parachute
|
|
// landing
|
|
channel_throttle->servo_out = 0;
|
|
return;
|
|
}
|
|
|
|
channel_throttle->servo_out = SpdHgt_Controller->get_throttle_demand();
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
/*
|
|
calculate yaw control for coordinated flight
|
|
*/
|
|
void Plane::calc_nav_yaw_coordinated(float speed_scaler)
|
|
{
|
|
bool disable_integrator = false;
|
|
if (control_mode == STABILIZE && rudder_input != 0) {
|
|
disable_integrator = true;
|
|
}
|
|
steering_control.rudder = yawController.get_servo_out(speed_scaler, disable_integrator);
|
|
|
|
// add in rudder mixing from roll
|
|
steering_control.rudder += channel_roll->servo_out * g.kff_rudder_mix;
|
|
steering_control.rudder += rudder_input;
|
|
steering_control.rudder = constrain_int16(steering_control.rudder, -4500, 4500);
|
|
}
|
|
|
|
/*
|
|
calculate yaw control for ground steering with specific course
|
|
*/
|
|
void Plane::calc_nav_yaw_course(void)
|
|
{
|
|
// holding a specific navigation course on the ground. Used in
|
|
// auto-takeoff and landing
|
|
int32_t bearing_error_cd = nav_controller->bearing_error_cd();
|
|
steering_control.steering = steerController.get_steering_out_angle_error(bearing_error_cd);
|
|
if (stick_mixing_enabled()) {
|
|
stick_mix_channel(channel_rudder, steering_control.steering);
|
|
}
|
|
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500);
|
|
}
|
|
|
|
/*
|
|
calculate yaw control for ground steering
|
|
*/
|
|
void Plane::calc_nav_yaw_ground(void)
|
|
{
|
|
if (gps.ground_speed() < 1 &&
|
|
channel_throttle->control_in == 0 &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_TAKEOFF &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
|
// manual rudder control while still
|
|
steer_state.locked_course = false;
|
|
steer_state.locked_course_err = 0;
|
|
steering_control.steering = rudder_input;
|
|
return;
|
|
}
|
|
|
|
float steer_rate = (rudder_input/4500.0f) * g.ground_steer_dps;
|
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF ||
|
|
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
|
steer_rate = 0;
|
|
}
|
|
if (!is_zero(steer_rate)) {
|
|
// pilot is giving rudder input
|
|
steer_state.locked_course = false;
|
|
} else if (!steer_state.locked_course) {
|
|
// pilot has released the rudder stick or we are still - lock the course
|
|
steer_state.locked_course = true;
|
|
if (flight_stage != AP_SpdHgtControl::FLIGHT_TAKEOFF &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
|
steer_state.locked_course_err = 0;
|
|
}
|
|
}
|
|
if (!steer_state.locked_course) {
|
|
// use a rate controller at the pilot specified rate
|
|
steering_control.steering = steerController.get_steering_out_rate(steer_rate);
|
|
} else {
|
|
// use a error controller on the summed error
|
|
int32_t yaw_error_cd = -ToDeg(steer_state.locked_course_err)*100;
|
|
steering_control.steering = steerController.get_steering_out_angle_error(yaw_error_cd);
|
|
}
|
|
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500);
|
|
}
|
|
|
|
|
|
/*
|
|
calculate a new nav_pitch_cd from the speed height controller
|
|
*/
|
|
void Plane::calc_nav_pitch()
|
|
{
|
|
// Calculate the Pitch of the plane
|
|
// --------------------------------
|
|
nav_pitch_cd = SpdHgt_Controller->get_pitch_demand();
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
}
|
|
|
|
|
|
/*
|
|
calculate a new nav_roll_cd from the navigation controller
|
|
*/
|
|
void Plane::calc_nav_roll()
|
|
{
|
|
nav_roll_cd = nav_controller->nav_roll_cd();
|
|
update_load_factor();
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
}
|
|
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
void Plane::throttle_slew_limit(int16_t last_throttle)
|
|
{
|
|
uint8_t slewrate = aparm.throttle_slewrate;
|
|
if (control_mode==AUTO && auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) {
|
|
slewrate = g.takeoff_throttle_slewrate;
|
|
}
|
|
// if slew limit rate is set to zero then do not slew limit
|
|
if (slewrate) {
|
|
// limit throttle change by the given percentage per second
|
|
float temp = slewrate * G_Dt * 0.01f * fabsf(channel_throttle->radio_max - channel_throttle->radio_min);
|
|
// allow a minimum change of 1 PWM per cycle
|
|
if (temp < 1) {
|
|
temp = 1;
|
|
}
|
|
channel_throttle->radio_out = constrain_int16(channel_throttle->radio_out, last_throttle - temp, last_throttle + temp);
|
|
}
|
|
}
|
|
|
|
/*****************************************
|
|
Flap slew limit
|
|
*****************************************/
|
|
void Plane::flap_slew_limit(int8_t &last_value, int8_t &new_value)
|
|
{
|
|
uint8_t slewrate = g.flap_slewrate;
|
|
// if slew limit rate is set to zero then do not slew limit
|
|
if (slewrate) {
|
|
// limit flap change by the given percentage per second
|
|
float temp = slewrate * G_Dt;
|
|
// allow a minimum change of 1% per cycle. This means the
|
|
// slowest flaps we can do is full change over 2 seconds
|
|
if (temp < 1) {
|
|
temp = 1;
|
|
}
|
|
new_value = constrain_int16(new_value, last_value - temp, last_value + temp);
|
|
}
|
|
last_value = new_value;
|
|
}
|
|
|
|
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
|
|
|
|
Disable throttle if following conditions are met:
|
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
|
|
* AND
|
|
* 2 - Our reported altitude is within 10 meters of the home altitude.
|
|
* 3 - Our reported speed is under 5 meters per second.
|
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
|
|
* OR
|
|
* 5 - Home location is not set
|
|
*/
|
|
bool Plane::suppress_throttle(void)
|
|
{
|
|
if (auto_throttle_mode && parachute.released()) {
|
|
// throttle always suppressed in auto-throttle modes after parachute release
|
|
throttle_suppressed = true;
|
|
return true;
|
|
}
|
|
|
|
if (!throttle_suppressed) {
|
|
// we've previously met a condition for unsupressing the throttle
|
|
return false;
|
|
}
|
|
if (!auto_throttle_mode) {
|
|
// the user controls the throttle
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (control_mode==AUTO && g.auto_fbw_steer) {
|
|
// user has throttle control
|
|
return false;
|
|
}
|
|
|
|
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5);
|
|
|
|
if (control_mode==AUTO &&
|
|
auto_state.takeoff_complete == false) {
|
|
|
|
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000;
|
|
if (is_flying() &&
|
|
millis() - started_flying_ms > max(launch_duration_ms,5000) && // been flying >5s in any mode
|
|
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home
|
|
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch
|
|
gps_movement) { // definate gps movement
|
|
// we're already flying, do not suppress the throttle. We can get
|
|
// stuck in this condition if we reset a mission and cmd 1 is takeoff
|
|
// but we're currently flying around below the takeoff altitude
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
if (auto_takeoff_check()) {
|
|
// we're in auto takeoff
|
|
throttle_suppressed = false;
|
|
auto_state.baro_takeoff_alt = barometer.get_altitude();
|
|
return false;
|
|
}
|
|
// keep throttle suppressed
|
|
return true;
|
|
}
|
|
|
|
if (relative_altitude_abs_cm() >= 1000) {
|
|
// we're more than 10m from the home altitude
|
|
throttle_suppressed = false;
|
|
gcs_send_text_fmt("Throttle enabled - altitude %.2f",
|
|
(double)(relative_altitude_abs_cm()*0.01f));
|
|
return false;
|
|
}
|
|
|
|
if (gps_movement) {
|
|
// if we have an airspeed sensor, then check it too, and
|
|
// require 5m/s. This prevents throttle up due to spiky GPS
|
|
// groundspeed with bad GPS reception
|
|
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) {
|
|
// we're moving at more than 5 m/s
|
|
gcs_send_text_fmt("Throttle enabled - speed %.2f airspeed %.2f",
|
|
(double)gps.ground_speed(),
|
|
(double)airspeed.get_airspeed());
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// throttle remains suppressed
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
implement a software VTail or elevon mixer. There are 4 different mixing modes
|
|
*/
|
|
void Plane::channel_output_mixer(uint8_t mixing_type, int16_t &chan1_out, int16_t &chan2_out)
|
|
{
|
|
int16_t c1, c2;
|
|
int16_t v1, v2;
|
|
|
|
// first get desired elevator and rudder as -500..500 values
|
|
c1 = chan1_out - 1500;
|
|
c2 = chan2_out - 1500;
|
|
|
|
v1 = (c1 - c2) * g.mixing_gain;
|
|
v2 = (c1 + c2) * g.mixing_gain;
|
|
|
|
// now map to mixed output
|
|
switch (mixing_type) {
|
|
case MIXING_DISABLED:
|
|
return;
|
|
|
|
case MIXING_UPUP:
|
|
break;
|
|
|
|
case MIXING_UPDN:
|
|
v2 = -v2;
|
|
break;
|
|
|
|
case MIXING_DNUP:
|
|
v1 = -v1;
|
|
break;
|
|
|
|
case MIXING_DNDN:
|
|
v1 = -v1;
|
|
v2 = -v2;
|
|
break;
|
|
}
|
|
|
|
// scale for a 1500 center and 900..2100 range, symmetric
|
|
v1 = constrain_int16(v1, -600, 600);
|
|
v2 = constrain_int16(v2, -600, 600);
|
|
|
|
chan1_out = 1500 + v1;
|
|
chan2_out = 1500 + v2;
|
|
}
|
|
|
|
/*
|
|
setup flaperon output channels
|
|
*/
|
|
void Plane::flaperon_update(int8_t flap_percent)
|
|
{
|
|
if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon1) ||
|
|
!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon2)) {
|
|
return;
|
|
}
|
|
int16_t ch1, ch2;
|
|
/*
|
|
flaperons are implemented as a mixer between aileron and a
|
|
percentage of flaps. Flap input can come from a manual channel
|
|
or from auto flaps.
|
|
|
|
Use k_flaperon1 and k_flaperon2 channel trims to center servos.
|
|
Then adjust aileron trim for level flight (note that aileron trim is affected
|
|
by mixing gain). flapin_channel's trim is not used.
|
|
*/
|
|
|
|
ch1 = channel_roll->radio_out;
|
|
// The *5 is to take a percentage to a value from -500 to 500 for the mixer
|
|
ch2 = 1500 - flap_percent * 5;
|
|
channel_output_mixer(g.flaperon_output, ch1, ch2);
|
|
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon1, ch1);
|
|
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon2, ch2);
|
|
}
|
|
|
|
/*
|
|
setup servos for idle mode
|
|
Idle mode is used during balloon launch to keep servos still, apart
|
|
from occasional wiggle to prevent freezing up
|
|
*/
|
|
void Plane::set_servos_idle(void)
|
|
{
|
|
RC_Channel_aux::output_ch_all();
|
|
if (auto_state.idle_wiggle_stage == 0) {
|
|
RC_Channel::output_trim_all();
|
|
return;
|
|
}
|
|
int16_t servo_value = 0;
|
|
// move over full range for 2 seconds
|
|
auto_state.idle_wiggle_stage += 2;
|
|
if (auto_state.idle_wiggle_stage < 50) {
|
|
servo_value = auto_state.idle_wiggle_stage * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 100) {
|
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 150) {
|
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 200) {
|
|
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50);
|
|
} else {
|
|
auto_state.idle_wiggle_stage = 0;
|
|
}
|
|
channel_roll->servo_out = servo_value;
|
|
channel_pitch->servo_out = servo_value;
|
|
channel_rudder->servo_out = servo_value;
|
|
channel_roll->calc_pwm();
|
|
channel_pitch->calc_pwm();
|
|
channel_rudder->calc_pwm();
|
|
channel_roll->output();
|
|
channel_pitch->output();
|
|
channel_throttle->output();
|
|
channel_rudder->output();
|
|
channel_throttle->output_trim();
|
|
}
|
|
|
|
/*
|
|
return minimum throttle, taking account of throttle reversal
|
|
*/
|
|
uint16_t Plane::throttle_min(void) const
|
|
{
|
|
return channel_throttle->get_reverse() ? channel_throttle->radio_max : channel_throttle->radio_min;
|
|
};
|
|
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
void Plane::set_servos(void)
|
|
{
|
|
int16_t last_throttle = channel_throttle->radio_out;
|
|
|
|
if (control_mode == AUTO && auto_state.idle_mode) {
|
|
// special handling for balloon launch
|
|
set_servos_idle();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
see if we are doing ground steering.
|
|
*/
|
|
if (!steering_control.ground_steering) {
|
|
// we are not at an altitude for ground steering. Set the nose
|
|
// wheel to the rudder just in case the barometer has drifted
|
|
// a lot
|
|
steering_control.steering = steering_control.rudder;
|
|
} else if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_steering)) {
|
|
// we are within the ground steering altitude but don't have a
|
|
// dedicated steering channel. Set the rudder to the ground
|
|
// steering output
|
|
steering_control.rudder = steering_control.steering;
|
|
}
|
|
channel_rudder->servo_out = steering_control.rudder;
|
|
|
|
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run
|
|
steering_control.ground_steering = false;
|
|
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_rudder, steering_control.rudder);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_steering, steering_control.steering);
|
|
|
|
if (control_mode == MANUAL) {
|
|
// do a direct pass through of radio values
|
|
if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) {
|
|
channel_roll->radio_out = channel_roll->radio_in;
|
|
channel_pitch->radio_out = channel_pitch->radio_in;
|
|
} else {
|
|
channel_roll->radio_out = channel_roll->read();
|
|
channel_pitch->radio_out = channel_pitch->read();
|
|
}
|
|
channel_throttle->radio_out = channel_throttle->radio_in;
|
|
channel_rudder->radio_out = channel_rudder->radio_in;
|
|
|
|
// setup extra channels. We want this to come from the
|
|
// main input channel, but using the 2nd channels dead
|
|
// zone, reverse and min/max settings. We need to use
|
|
// pwm_to_angle_dz() to ensure we don't trim the value for the
|
|
// deadzone of the main aileron channel, otherwise the 2nd
|
|
// aileron won't quite follow the first one
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, channel_roll->pwm_to_angle_dz(0));
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, channel_pitch->pwm_to_angle_dz(0));
|
|
|
|
// this variant assumes you have the corresponding
|
|
// input channel setup in your transmitter for manual control
|
|
// of the 2nd aileron
|
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input);
|
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input);
|
|
|
|
if (g.mix_mode == 0 && g.elevon_output == MIXING_DISABLED) {
|
|
// set any differential spoilers to follow the elevons in
|
|
// manual mode.
|
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler1, channel_roll->radio_out);
|
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler2, channel_pitch->radio_out);
|
|
}
|
|
} else {
|
|
if (g.mix_mode == 0) {
|
|
// both types of secondary aileron are slaved to the roll servo out
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, channel_roll->servo_out);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron_with_input, channel_roll->servo_out);
|
|
|
|
// both types of secondary elevator are slaved to the pitch servo out
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, channel_pitch->servo_out);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator_with_input, channel_pitch->servo_out);
|
|
}else{
|
|
/*Elevon mode*/
|
|
float ch1;
|
|
float ch2;
|
|
ch1 = channel_pitch->servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->servo_out);
|
|
ch2 = channel_pitch->servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->servo_out);
|
|
|
|
/* Differential Spoilers
|
|
If differential spoilers are setup, then we translate
|
|
rudder control into splitting of the two ailerons on
|
|
the side of the aircraft where we want to induce
|
|
additional drag.
|
|
*/
|
|
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) {
|
|
float ch3 = ch1;
|
|
float ch4 = ch2;
|
|
if ( BOOL_TO_SIGN(g.reverse_elevons) * channel_rudder->servo_out < 0) {
|
|
ch1 += abs(channel_rudder->servo_out);
|
|
ch3 -= abs(channel_rudder->servo_out);
|
|
} else {
|
|
ch2 += abs(channel_rudder->servo_out);
|
|
ch4 -= abs(channel_rudder->servo_out);
|
|
}
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler1, ch3);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler2, ch4);
|
|
}
|
|
|
|
// directly set the radio_out values for elevon mode
|
|
channel_roll->radio_out = elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0f/ SERVO_MAX));
|
|
channel_pitch->radio_out = elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0f/ SERVO_MAX));
|
|
}
|
|
|
|
// push out the PWM values
|
|
if (g.mix_mode == 0) {
|
|
channel_roll->calc_pwm();
|
|
channel_pitch->calc_pwm();
|
|
}
|
|
channel_rudder->calc_pwm();
|
|
|
|
#if THROTTLE_OUT == 0
|
|
channel_throttle->servo_out = 0;
|
|
#else
|
|
// convert 0 to 100% into PWM
|
|
uint8_t min_throttle = aparm.throttle_min.get();
|
|
uint8_t max_throttle = aparm.throttle_max.get();
|
|
if (control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) {
|
|
min_throttle = 0;
|
|
}
|
|
if (control_mode == AUTO &&
|
|
(flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT)) {
|
|
if(aparm.takeoff_throttle_max != 0) {
|
|
max_throttle = aparm.takeoff_throttle_max;
|
|
} else {
|
|
max_throttle = aparm.throttle_max;
|
|
}
|
|
}
|
|
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out,
|
|
min_throttle,
|
|
max_throttle);
|
|
|
|
if (!hal.util->get_soft_armed()) {
|
|
channel_throttle->servo_out = 0;
|
|
channel_throttle->calc_pwm();
|
|
} else if (suppress_throttle()) {
|
|
// throttle is suppressed in auto mode
|
|
channel_throttle->servo_out = 0;
|
|
if (g.throttle_suppress_manual) {
|
|
// manual pass through of throttle while throttle is suppressed
|
|
channel_throttle->radio_out = channel_throttle->radio_in;
|
|
} else {
|
|
channel_throttle->calc_pwm();
|
|
}
|
|
} else if (g.throttle_passthru_stabilize &&
|
|
(control_mode == STABILIZE ||
|
|
control_mode == TRAINING ||
|
|
control_mode == ACRO ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == AUTOTUNE)) {
|
|
// manual pass through of throttle while in FBWA or
|
|
// STABILIZE mode with THR_PASS_STAB set
|
|
channel_throttle->radio_out = channel_throttle->radio_in;
|
|
} else if (control_mode == GUIDED &&
|
|
guided_throttle_passthru) {
|
|
// manual pass through of throttle while in GUIDED
|
|
channel_throttle->radio_out = channel_throttle->radio_in;
|
|
} else {
|
|
// normal throttle calculation based on servo_out
|
|
channel_throttle->calc_pwm();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Auto flap deployment
|
|
int8_t auto_flap_percent = 0;
|
|
int8_t manual_flap_percent = 0;
|
|
static int8_t last_auto_flap;
|
|
static int8_t last_manual_flap;
|
|
|
|
// work out any manual flap input
|
|
RC_Channel *flapin = RC_Channel::rc_channel(g.flapin_channel-1);
|
|
if (flapin != NULL && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) {
|
|
flapin->input();
|
|
manual_flap_percent = flapin->percent_input();
|
|
}
|
|
|
|
if (auto_throttle_mode) {
|
|
int16_t flapSpeedSource = 0;
|
|
if (ahrs.airspeed_sensor_enabled()) {
|
|
flapSpeedSource = target_airspeed_cm * 0.01f;
|
|
} else {
|
|
flapSpeedSource = aparm.throttle_cruise;
|
|
}
|
|
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) {
|
|
auto_flap_percent = g.flap_2_percent;
|
|
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) {
|
|
auto_flap_percent = g.flap_1_percent;
|
|
} //else flaps stay at default zero deflection
|
|
|
|
/*
|
|
special flap levels for takeoff and landing. This works
|
|
better than speed based flaps as it leads to less
|
|
possibility of oscillation
|
|
*/
|
|
if (control_mode == AUTO) {
|
|
switch (flight_stage) {
|
|
case AP_SpdHgtControl::FLIGHT_TAKEOFF:
|
|
case AP_SpdHgtControl::FLIGHT_LAND_ABORT:
|
|
if (g.takeoff_flap_percent != 0) {
|
|
auto_flap_percent = g.takeoff_flap_percent;
|
|
}
|
|
break;
|
|
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH:
|
|
case AP_SpdHgtControl::FLIGHT_LAND_FINAL:
|
|
if (g.land_flap_percent != 0) {
|
|
auto_flap_percent = g.land_flap_percent;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// manual flap input overrides auto flap input
|
|
if (abs(manual_flap_percent) > auto_flap_percent) {
|
|
auto_flap_percent = manual_flap_percent;
|
|
}
|
|
|
|
flap_slew_limit(last_auto_flap, auto_flap_percent);
|
|
flap_slew_limit(last_manual_flap, manual_flap_percent);
|
|
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, auto_flap_percent);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap, manual_flap_percent);
|
|
|
|
if (control_mode >= FLY_BY_WIRE_B) {
|
|
/* only do throttle slew limiting in modes where throttle
|
|
* control is automatic */
|
|
throttle_slew_limit(last_throttle);
|
|
}
|
|
|
|
if (control_mode == TRAINING) {
|
|
// copy rudder in training mode
|
|
channel_rudder->radio_out = channel_rudder->radio_in;
|
|
}
|
|
|
|
if (g.flaperon_output != MIXING_DISABLED && g.elevon_output == MIXING_DISABLED && g.mix_mode == 0) {
|
|
flaperon_update(auto_flap_percent);
|
|
}
|
|
if (g.vtail_output != MIXING_DISABLED) {
|
|
channel_output_mixer(g.vtail_output, channel_pitch->radio_out, channel_rudder->radio_out);
|
|
} else if (g.elevon_output != MIXING_DISABLED) {
|
|
channel_output_mixer(g.elevon_output, channel_pitch->radio_out, channel_roll->radio_out);
|
|
}
|
|
|
|
if (!arming.is_armed()) {
|
|
//Some ESCs get noisy (beep error msgs) if PWM == 0.
|
|
//This little segment aims to avoid this.
|
|
switch (arming.arming_required()) {
|
|
case AP_Arming::NO:
|
|
//keep existing behavior: do nothing to radio_out
|
|
//(don't disarm throttle channel even if AP_Arming class is)
|
|
break;
|
|
|
|
case AP_Arming::YES_ZERO_PWM:
|
|
channel_throttle->radio_out = 0;
|
|
break;
|
|
|
|
case AP_Arming::YES_MIN_PWM:
|
|
default:
|
|
channel_throttle->radio_out = throttle_min();
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if OBC_FAILSAFE == ENABLED
|
|
// this is to allow the failsafe module to deliberately crash
|
|
// the plane. Only used in extreme circumstances to meet the
|
|
// OBC rules
|
|
obc.check_crash_plane();
|
|
#endif
|
|
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode == 1) {
|
|
// get the servos to the GCS immediately for HIL
|
|
if (comm_get_txspace(MAVLINK_COMM_0) >=
|
|
MAVLINK_MSG_ID_RC_CHANNELS_SCALED_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES) {
|
|
send_servo_out(MAVLINK_COMM_0);
|
|
}
|
|
if (!g.hil_servos) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// send values to the PWM timers for output
|
|
// ----------------------------------------
|
|
if (g.rudder_only == 0) {
|
|
// when we RUDDER_ONLY mode we don't send the channel_roll
|
|
// output and instead rely on KFF_RDDRMIX. That allows the yaw
|
|
// damper to operate.
|
|
channel_roll->output();
|
|
}
|
|
channel_pitch->output();
|
|
channel_throttle->output();
|
|
channel_rudder->output();
|
|
RC_Channel_aux::output_ch_all();
|
|
}
|
|
|
|
void Plane::demo_servos(uint8_t i)
|
|
{
|
|
while(i > 0) {
|
|
gcs_send_text(MAV_SEVERITY_WARNING,"Demo Servos!");
|
|
demoing_servos = true;
|
|
servo_write(1, 1400);
|
|
hal.scheduler->delay(400);
|
|
servo_write(1, 1600);
|
|
hal.scheduler->delay(200);
|
|
servo_write(1, 1500);
|
|
demoing_servos = false;
|
|
hal.scheduler->delay(400);
|
|
i--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
adjust nav_pitch_cd for STAB_PITCH_DOWN_CD. This is used to make
|
|
keeping up good airspeed in FBWA mode easier, as the plane will
|
|
automatically pitch down a little when at low throttle. It makes
|
|
FBWA landings without stalling much easier.
|
|
*/
|
|
void Plane::adjust_nav_pitch_throttle(void)
|
|
{
|
|
uint8_t throttle = throttle_percentage();
|
|
if (throttle < aparm.throttle_cruise) {
|
|
float p = (aparm.throttle_cruise - throttle) / (float)aparm.throttle_cruise;
|
|
nav_pitch_cd -= g.stab_pitch_down * 100.0f * p;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
calculate a new aerodynamic_load_factor and limit nav_roll_cd to
|
|
ensure that the load factor does not take us below the sustainable
|
|
airspeed
|
|
*/
|
|
void Plane::update_load_factor(void)
|
|
{
|
|
float demanded_roll = fabsf(nav_roll_cd*0.01f);
|
|
if (demanded_roll > 85) {
|
|
// limit to 85 degrees to prevent numerical errors
|
|
demanded_roll = 85;
|
|
}
|
|
aerodynamic_load_factor = 1.0f / safe_sqrt(cosf(radians(demanded_roll)));
|
|
|
|
if (!aparm.stall_prevention) {
|
|
// stall prevention is disabled
|
|
return;
|
|
}
|
|
if (fly_inverted()) {
|
|
// no roll limits when inverted
|
|
return;
|
|
}
|
|
|
|
float max_load_factor = smoothed_airspeed / aparm.airspeed_min;
|
|
if (max_load_factor <= 1) {
|
|
// our airspeed is below the minimum airspeed. Limit roll to
|
|
// 25 degrees
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -2500, 2500);
|
|
roll_limit_cd = constrain_int32(roll_limit_cd, -2500, 2500);
|
|
} else if (max_load_factor < aerodynamic_load_factor) {
|
|
// the demanded nav_roll would take us past the aerodymamic
|
|
// load limit. Limit our roll to a bank angle that will keep
|
|
// the load within what the airframe can handle. We always
|
|
// allow at least 25 degrees of roll however, to ensure the
|
|
// aircraft can be maneuvered with a bad airspeed estimate. At
|
|
// 25 degrees the load factor is 1.1 (10%)
|
|
int32_t roll_limit = degrees(acosf(sq(1.0f / max_load_factor)))*100;
|
|
if (roll_limit < 2500) {
|
|
roll_limit = 2500;
|
|
}
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit, roll_limit);
|
|
roll_limit_cd = constrain_int32(roll_limit_cd, -roll_limit, roll_limit);
|
|
}
|
|
}
|