mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 13:18:28 -04:00
1e7ac873b9
Extended GPS loss can result in the earth field states becoming rotated and making it difficult for the EKF to recover its heading when GPS is regained. During prolonged GPS outages, the position covariance can become large enough to cause the reset function to continually activate. This is fixed by ensuring that position covariances are always reset when the position is reset. The innovation variance was being used incorrectly instead of the state variance to trigger the glitch reset.
853 lines
46 KiB
C++
853 lines
46 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/********************************************************
|
|
* RESET FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Control reset of yaw and magnetic field states
|
|
void NavEKF2_core::controlMagYawReset()
|
|
{
|
|
// Monitor the gain in height and reset the magnetic field states and heading when initial altitude has been gained
|
|
// This is done to prevent magnetic field distoration from steel roofs and adjacent structures causing bad earth field and initial yaw values
|
|
if (inFlight && !firstMagYawInit && (stateStruct.position.z - posDownAtTakeoff) < -1.5f) {
|
|
// Do the first in-air yaw and earth mag field initialisation when the vehicle has gained 1.5m of altitude after commencement of flight
|
|
Vector3f eulerAngles;
|
|
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
|
|
stateStruct.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
|
StoreQuatReset();
|
|
firstMagYawInit = true;
|
|
magFuseTiltInhibit_ms = imuSampleTime_ms;
|
|
} else if (inFlight && !secondMagYawInit && (stateStruct.position.z - posDownAtTakeoff) < -5.0f) {
|
|
// Do the second and final yaw and earth mag field initialisation when the vehicle has gained 5.0m of altitude after commencement of flight
|
|
// This second and final correction is needed for flight from large metal structures where the magnetic field distortion can extend up to 5m
|
|
Vector3f eulerAngles;
|
|
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
|
|
stateStruct.quat = calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
|
StoreQuatReset();
|
|
secondMagYawInit = true;
|
|
magFuseTiltInhibit_ms = imuSampleTime_ms;
|
|
}
|
|
|
|
// perform a yaw alignment check against GPS if exiting on-ground mode for fly forward type vehicle (plane)
|
|
// this is done to protect against unrecoverable heading alignment errors due to compass faults
|
|
if (!onGround && prevOnGround && assume_zero_sideslip()) {
|
|
alignYawGPS();
|
|
}
|
|
|
|
// inhibit the 3-axis mag fusion from modifying the tilt states for the first few seconds after a mag field reset
|
|
// to allow the mag states to converge and prevent disturbances in roll and pitch.
|
|
if (imuSampleTime_ms - magFuseTiltInhibit_ms < 5000) {
|
|
magFuseTiltInhibit = true;
|
|
} else {
|
|
magFuseTiltInhibit = false;
|
|
}
|
|
|
|
}
|
|
|
|
// this function is used to do a forced alignment of the yaw angle to align with the horizontal velocity
|
|
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
|
|
void NavEKF2_core::alignYawGPS()
|
|
{
|
|
if ((sq(gpsDataDelayed.vel.x) + sq(gpsDataDelayed.vel.y)) > 25.0f) {
|
|
float roll;
|
|
float pitch;
|
|
float oldYaw;
|
|
float newYaw;
|
|
float yawErr;
|
|
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
|
|
stateStruct.quat.to_euler(roll, pitch, oldYaw);
|
|
// calculate course yaw angle
|
|
oldYaw = atan2f(stateStruct.velocity.y,stateStruct.velocity.x);
|
|
// calculate yaw angle from GPS velocity
|
|
newYaw = atan2f(gpsDataNew.vel.y,gpsDataNew.vel.x);
|
|
// estimate the yaw error
|
|
yawErr = wrap_PI(newYaw - oldYaw);
|
|
// If the inertial course angle disagrees with the GPS by more than 45 degrees, we declare the compass as bad
|
|
badMag = (fabsf(yawErr) > 0.7854f);
|
|
// correct yaw angle using GPS ground course compass failed or if not previously aligned
|
|
if (badMag || !yawAligned) {
|
|
// correct the yaw angle
|
|
newYaw = oldYaw + yawErr;
|
|
// calculate new filter quaternion states from Euler angles
|
|
stateStruct.quat.from_euler(roll, pitch, newYaw);
|
|
// the yaw angle is now aligned so update its status
|
|
yawAligned = true;
|
|
// reset the position and velocity states
|
|
ResetPosition();
|
|
ResetVelocity();
|
|
// reset the covariance for the quaternion, velocity and position states
|
|
// zero the matrix entries
|
|
zeroRows(P,0,9);
|
|
zeroCols(P,0,9);
|
|
// velocities - we could have a big error coming out of constant position mode due to GPS lag
|
|
P[3][3] = 400.0f;
|
|
P[4][4] = P[3][3];
|
|
P[5][5] = sq(0.7f);
|
|
// positions - we could have a big error coming out of constant position mode due to GPS lag
|
|
P[6][6] = 400.0f;
|
|
P[7][7] = P[6][6];
|
|
P[8][8] = sq(5.0f);
|
|
}
|
|
// Update magnetic field states if the magnetometer is bad
|
|
if (badMag) {
|
|
Vector3f eulerAngles;
|
|
getEulerAngles(eulerAngles);
|
|
calcQuatAndFieldStates(eulerAngles.x, eulerAngles.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of magnetometer data
|
|
void NavEKF2_core::SelectMagFusion()
|
|
{
|
|
// start performance timer
|
|
hal.util->perf_begin(_perf_FuseMagnetometer);
|
|
|
|
// clear the flag that lets other processes know that the expensive magnetometer fusion operation has been perfomred on that time step
|
|
// used for load levelling
|
|
magFusePerformed = false;
|
|
|
|
// check for and read new magnetometer measurements
|
|
readMagData();
|
|
|
|
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
|
|
if (magHealth) {
|
|
magTimeout = false;
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > frontend.magFailTimeLimit_ms && use_compass()) {
|
|
magTimeout = true;
|
|
}
|
|
|
|
bool temp = RecallMag();
|
|
|
|
// determine if conditions are right to start a new fusion cycle
|
|
// wait until the EKF time horizon catches up with the measurement
|
|
bool dataReady = (temp && statesInitialised && use_compass() && yawAlignComplete);
|
|
if (dataReady) {
|
|
// ensure that the covariance prediction is up to date before fusing data
|
|
if (!covPredStep) CovariancePrediction();
|
|
// If we haven't performed the first airborne magnetic field update or have inhibited magnetic field learning, then we use the simple method of declination to maintain heading
|
|
if(inhibitMagStates) {
|
|
fuseCompass();
|
|
magHealth = true;
|
|
magTimeout = false;
|
|
} else {
|
|
// if we are not doing aiding with earth relative observations (eg GPS) then the declination is
|
|
// maintained by fusing declination as a synthesised observation
|
|
if (PV_AidingMode != AID_ABSOLUTE || (imuSampleTime_ms - lastPosPassTime_ms) > 4000) {
|
|
FuseDeclination();
|
|
}
|
|
// fuse the three magnetometer componenents sequentially
|
|
for (mag_state.obsIndex = 0; mag_state.obsIndex <= 2; mag_state.obsIndex++) {
|
|
hal.util->perf_begin(_perf_test[0]);
|
|
FuseMagnetometer();
|
|
hal.util->perf_end(_perf_test[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// stop performance timer
|
|
hal.util->perf_end(_perf_FuseMagnetometer);
|
|
}
|
|
|
|
/*
|
|
* Fuse magnetometer measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
*/
|
|
void NavEKF2_core::FuseMagnetometer()
|
|
{
|
|
hal.util->perf_begin(_perf_test[1]);
|
|
|
|
// declarations
|
|
ftype &q0 = mag_state.q0;
|
|
ftype &q1 = mag_state.q1;
|
|
ftype &q2 = mag_state.q2;
|
|
ftype &q3 = mag_state.q3;
|
|
ftype &magN = mag_state.magN;
|
|
ftype &magE = mag_state.magE;
|
|
ftype &magD = mag_state.magD;
|
|
ftype &magXbias = mag_state.magXbias;
|
|
ftype &magYbias = mag_state.magYbias;
|
|
ftype &magZbias = mag_state.magZbias;
|
|
uint8_t &obsIndex = mag_state.obsIndex;
|
|
Matrix3f &DCM = mag_state.DCM;
|
|
Vector3f &MagPred = mag_state.MagPred;
|
|
ftype &R_MAG = mag_state.R_MAG;
|
|
ftype *SH_MAG = &mag_state.SH_MAG[0];
|
|
Vector24 H_MAG;
|
|
Vector6 SK_MX;
|
|
Vector6 SK_MY;
|
|
Vector6 SK_MZ;
|
|
|
|
hal.util->perf_end(_perf_test[1]);
|
|
|
|
// perform sequential fusion of magnetometer measurements.
|
|
// this assumes that the errors in the different components are
|
|
// uncorrelated which is not true, however in the absence of covariance
|
|
// data fit is the only assumption we can make
|
|
// so we might as well take advantage of the computational efficiencies
|
|
// associated with sequential fusion
|
|
// calculate observation jacobians and Kalman gains
|
|
if (obsIndex == 0)
|
|
{
|
|
hal.util->perf_begin(_perf_test[2]);
|
|
// copy required states to local variable names
|
|
q0 = stateStruct.quat[0];
|
|
q1 = stateStruct.quat[1];
|
|
q2 = stateStruct.quat[2];
|
|
q3 = stateStruct.quat[3];
|
|
magN = stateStruct.earth_magfield[0];
|
|
magE = stateStruct.earth_magfield[1];
|
|
magD = stateStruct.earth_magfield[2];
|
|
magXbias = stateStruct.body_magfield[0];
|
|
magYbias = stateStruct.body_magfield[1];
|
|
magZbias = stateStruct.body_magfield[2];
|
|
|
|
// rotate predicted earth components into body axes and calculate
|
|
// predicted measurements
|
|
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
|
|
DCM[0][1] = 2.0f*(q1*q2 + q0*q3);
|
|
DCM[0][2] = 2.0f*(q1*q3-q0*q2);
|
|
DCM[1][0] = 2.0f*(q1*q2 - q0*q3);
|
|
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
|
|
DCM[1][2] = 2.0f*(q2*q3 + q0*q1);
|
|
DCM[2][0] = 2.0f*(q1*q3 + q0*q2);
|
|
DCM[2][1] = 2.0f*(q2*q3 - q0*q1);
|
|
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
|
|
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
|
|
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
|
|
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
|
|
|
|
// scale magnetometer observation error with total angular rate
|
|
R_MAG = sq(constrain_float(frontend._magNoise, 0.01f, 0.5f)) + sq(frontend.magVarRateScale*imuDataDelayed.delAng.length() / dtIMUavg);
|
|
|
|
// calculate observation jacobians
|
|
SH_MAG[0] = sq(q0) - sq(q1) + sq(q2) - sq(q3);
|
|
SH_MAG[1] = sq(q0) + sq(q1) - sq(q2) - sq(q3);
|
|
SH_MAG[2] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
|
SH_MAG[3] = 2.0f*q0*q1 + 2.0f*q2*q3;
|
|
SH_MAG[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
|
|
SH_MAG[5] = 2.0f*q0*q2 + 2.0f*q1*q3;
|
|
SH_MAG[6] = magE*(2.0f*q0*q1 - 2.0f*q2*q3);
|
|
SH_MAG[7] = 2.0f*q1*q3 - 2.0f*q0*q2;
|
|
SH_MAG[8] = 2.0f*q0*q3;
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[1] = SH_MAG[6] - magD*SH_MAG[2] - magN*SH_MAG[5];
|
|
H_MAG[2] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
|
|
H_MAG[16] = SH_MAG[1];
|
|
H_MAG[17] = SH_MAG[4];
|
|
H_MAG[18] = SH_MAG[7];
|
|
H_MAG[19] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
varInnovMag[0] = (P[19][19] + R_MAG - P[1][19]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][19]*SH_MAG[1] + P[17][19]*SH_MAG[4] + P[18][19]*SH_MAG[7] + P[2][19]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) - (magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5])*(P[19][1] - P[1][1]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][1]*SH_MAG[1] + P[17][1]*SH_MAG[4] + P[18][1]*SH_MAG[7] + P[2][1]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[1]*(P[19][16] - P[1][16]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][16]*SH_MAG[1] + P[17][16]*SH_MAG[4] + P[18][16]*SH_MAG[7] + P[2][16]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[4]*(P[19][17] - P[1][17]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][17]*SH_MAG[1] + P[17][17]*SH_MAG[4] + P[18][17]*SH_MAG[7] + P[2][17]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + SH_MAG[7]*(P[19][18] - P[1][18]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][18]*SH_MAG[1] + P[17][18]*SH_MAG[4] + P[18][18]*SH_MAG[7] + P[2][18]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))) + (magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))*(P[19][2] - P[1][2]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[16][2]*SH_MAG[1] + P[17][2]*SH_MAG[4] + P[18][2]*SH_MAG[7] + P[2][2]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))));
|
|
if (varInnovMag[0] >= R_MAG) {
|
|
SK_MX[0] = 1.0f / varInnovMag[0];
|
|
faultStatus.bad_xmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
obsIndex = 1;
|
|
faultStatus.bad_xmag = true;
|
|
hal.util->perf_end(_perf_test[2]);
|
|
return;
|
|
}
|
|
SK_MX[1] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
|
|
SK_MX[2] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
|
|
SK_MX[3] = SH_MAG[7];
|
|
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][16]*SH_MAG[1] + P[0][17]*SH_MAG[4] - P[0][1]*SK_MX[2] + P[0][2]*SK_MX[1] + P[0][18]*SK_MX[3]);
|
|
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][16]*SH_MAG[1] + P[1][17]*SH_MAG[4] - P[1][1]*SK_MX[2] + P[1][2]*SK_MX[1] + P[1][18]*SK_MX[3]);
|
|
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][16]*SH_MAG[1] + P[2][17]*SH_MAG[4] - P[2][1]*SK_MX[2] + P[2][2]*SK_MX[1] + P[2][18]*SK_MX[3]);
|
|
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][16]*SH_MAG[1] + P[3][17]*SH_MAG[4] - P[3][1]*SK_MX[2] + P[3][2]*SK_MX[1] + P[3][18]*SK_MX[3]);
|
|
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][16]*SH_MAG[1] + P[4][17]*SH_MAG[4] - P[4][1]*SK_MX[2] + P[4][2]*SK_MX[1] + P[4][18]*SK_MX[3]);
|
|
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][16]*SH_MAG[1] + P[5][17]*SH_MAG[4] - P[5][1]*SK_MX[2] + P[5][2]*SK_MX[1] + P[5][18]*SK_MX[3]);
|
|
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][16]*SH_MAG[1] + P[6][17]*SH_MAG[4] - P[6][1]*SK_MX[2] + P[6][2]*SK_MX[1] + P[6][18]*SK_MX[3]);
|
|
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][16]*SH_MAG[1] + P[7][17]*SH_MAG[4] - P[7][1]*SK_MX[2] + P[7][2]*SK_MX[1] + P[7][18]*SK_MX[3]);
|
|
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][16]*SH_MAG[1] + P[8][17]*SH_MAG[4] - P[8][1]*SK_MX[2] + P[8][2]*SK_MX[1] + P[8][18]*SK_MX[3]);
|
|
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][16]*SH_MAG[1] + P[9][17]*SH_MAG[4] - P[9][1]*SK_MX[2] + P[9][2]*SK_MX[1] + P[9][18]*SK_MX[3]);
|
|
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][16]*SH_MAG[1] + P[10][17]*SH_MAG[4] - P[10][1]*SK_MX[2] + P[10][2]*SK_MX[1] + P[10][18]*SK_MX[3]);
|
|
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][16]*SH_MAG[1] + P[11][17]*SH_MAG[4] - P[11][1]*SK_MX[2] + P[11][2]*SK_MX[1] + P[11][18]*SK_MX[3]);
|
|
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][16]*SH_MAG[1] + P[12][17]*SH_MAG[4] - P[12][1]*SK_MX[2] + P[12][2]*SK_MX[1] + P[12][18]*SK_MX[3]);
|
|
Kfusion[13] = SK_MX[0]*(P[13][19] + P[13][16]*SH_MAG[1] + P[13][17]*SH_MAG[4] - P[13][1]*SK_MX[2] + P[13][2]*SK_MX[1] + P[13][18]*SK_MX[3]);
|
|
Kfusion[14] = SK_MX[0]*(P[14][19] + P[14][16]*SH_MAG[1] + P[14][17]*SH_MAG[4] - P[14][1]*SK_MX[2] + P[14][2]*SK_MX[1] + P[14][18]*SK_MX[3]);
|
|
Kfusion[15] = SK_MX[0]*(P[15][19] + P[15][16]*SH_MAG[1] + P[15][17]*SH_MAG[4] - P[15][1]*SK_MX[2] + P[15][2]*SK_MX[1] + P[15][18]*SK_MX[3]);
|
|
// end perf block
|
|
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MX[0]*(P[22][19] + P[22][16]*SH_MAG[1] + P[22][17]*SH_MAG[4] - P[22][1]*SK_MX[2] + P[22][2]*SK_MX[1] + P[22][18]*SK_MX[3]);
|
|
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][16]*SH_MAG[1] + P[23][17]*SH_MAG[4] - P[23][1]*SK_MX[2] + P[23][2]*SK_MX[1] + P[23][18]*SK_MX[3]);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][16]*SH_MAG[1] + P[16][17]*SH_MAG[4] - P[16][1]*SK_MX[2] + P[16][2]*SK_MX[1] + P[16][18]*SK_MX[3]);
|
|
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][16]*SH_MAG[1] + P[17][17]*SH_MAG[4] - P[17][1]*SK_MX[2] + P[17][2]*SK_MX[1] + P[17][18]*SK_MX[3]);
|
|
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][16]*SH_MAG[1] + P[18][17]*SH_MAG[4] - P[18][1]*SK_MX[2] + P[18][2]*SK_MX[1] + P[18][18]*SK_MX[3]);
|
|
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][16]*SH_MAG[1] + P[19][17]*SH_MAG[4] - P[19][1]*SK_MX[2] + P[19][2]*SK_MX[1] + P[19][18]*SK_MX[3]);
|
|
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][16]*SH_MAG[1] + P[20][17]*SH_MAG[4] - P[20][1]*SK_MX[2] + P[20][2]*SK_MX[1] + P[20][18]*SK_MX[3]);
|
|
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][16]*SH_MAG[1] + P[21][17]*SH_MAG[4] - P[21][1]*SK_MX[2] + P[21][2]*SK_MX[1] + P[21][18]*SK_MX[3]);
|
|
} else {
|
|
for (uint8_t i=16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// reset the observation index to 0 (we start by fusing the X measurement)
|
|
obsIndex = 0;
|
|
|
|
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = true;
|
|
hal.util->perf_end(_perf_test[2]);
|
|
}
|
|
else if (obsIndex == 1) // we are now fusing the Y measurement
|
|
{
|
|
hal.util->perf_begin(_perf_test[3]);
|
|
// calculate observation jacobians
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
|
|
H_MAG[2] = - magE*SH_MAG[4] - magD*SH_MAG[7] - magN*SH_MAG[1];
|
|
H_MAG[16] = 2.0f*q1*q2 - SH_MAG[8];
|
|
H_MAG[17] = SH_MAG[0];
|
|
H_MAG[18] = SH_MAG[3];
|
|
H_MAG[20] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
varInnovMag[1] = (P[20][20] + R_MAG + P[0][20]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][20]*SH_MAG[0] + P[18][20]*SH_MAG[3] - (SH_MAG[8] - 2.0f*q1*q2)*(P[20][16] + P[0][16]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][16]*SH_MAG[0] + P[18][16]*SH_MAG[3] - P[2][16]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][16]*(SH_MAG[8] - 2.0f*q1*q2)) - P[2][20]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) + (magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5])*(P[20][0] + P[0][0]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][0]*SH_MAG[0] + P[18][0]*SH_MAG[3] - P[2][0]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][0]*(SH_MAG[8] - 2.0f*q1*q2)) + SH_MAG[0]*(P[20][17] + P[0][17]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][17]*SH_MAG[0] + P[18][17]*SH_MAG[3] - P[2][17]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][17]*(SH_MAG[8] - 2.0f*q1*q2)) + SH_MAG[3]*(P[20][18] + P[0][18]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][18]*SH_MAG[0] + P[18][18]*SH_MAG[3] - P[2][18]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][18]*(SH_MAG[8] - 2.0f*q1*q2)) - P[16][20]*(SH_MAG[8] - 2.0f*q1*q2) - (magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1])*(P[20][2] + P[0][2]*(magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5]) + P[17][2]*SH_MAG[0] + P[18][2]*SH_MAG[3] - P[2][2]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[16][2]*(SH_MAG[8] - 2.0f*q1*q2)));
|
|
if (varInnovMag[1] >= R_MAG) {
|
|
SK_MY[0] = 1.0f / varInnovMag[1];
|
|
faultStatus.bad_ymag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
obsIndex = 2;
|
|
faultStatus.bad_ymag = true;
|
|
hal.util->perf_end(_perf_test[3]);
|
|
return;
|
|
}
|
|
SK_MY[1] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
|
|
SK_MY[2] = magD*SH_MAG[2] - SH_MAG[6] + magN*SH_MAG[5];
|
|
SK_MY[3] = SH_MAG[8] - 2.0f*q1*q2;
|
|
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][17]*SH_MAG[0] + P[0][18]*SH_MAG[3] + P[0][0]*SK_MY[2] - P[0][2]*SK_MY[1] - P[0][16]*SK_MY[3]);
|
|
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][17]*SH_MAG[0] + P[1][18]*SH_MAG[3] + P[1][0]*SK_MY[2] - P[1][2]*SK_MY[1] - P[1][16]*SK_MY[3]);
|
|
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][17]*SH_MAG[0] + P[2][18]*SH_MAG[3] + P[2][0]*SK_MY[2] - P[2][2]*SK_MY[1] - P[2][16]*SK_MY[3]);
|
|
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][17]*SH_MAG[0] + P[3][18]*SH_MAG[3] + P[3][0]*SK_MY[2] - P[3][2]*SK_MY[1] - P[3][16]*SK_MY[3]);
|
|
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][17]*SH_MAG[0] + P[4][18]*SH_MAG[3] + P[4][0]*SK_MY[2] - P[4][2]*SK_MY[1] - P[4][16]*SK_MY[3]);
|
|
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][17]*SH_MAG[0] + P[5][18]*SH_MAG[3] + P[5][0]*SK_MY[2] - P[5][2]*SK_MY[1] - P[5][16]*SK_MY[3]);
|
|
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][17]*SH_MAG[0] + P[6][18]*SH_MAG[3] + P[6][0]*SK_MY[2] - P[6][2]*SK_MY[1] - P[6][16]*SK_MY[3]);
|
|
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][17]*SH_MAG[0] + P[7][18]*SH_MAG[3] + P[7][0]*SK_MY[2] - P[7][2]*SK_MY[1] - P[7][16]*SK_MY[3]);
|
|
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][17]*SH_MAG[0] + P[8][18]*SH_MAG[3] + P[8][0]*SK_MY[2] - P[8][2]*SK_MY[1] - P[8][16]*SK_MY[3]);
|
|
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][17]*SH_MAG[0] + P[9][18]*SH_MAG[3] + P[9][0]*SK_MY[2] - P[9][2]*SK_MY[1] - P[9][16]*SK_MY[3]);
|
|
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][17]*SH_MAG[0] + P[10][18]*SH_MAG[3] + P[10][0]*SK_MY[2] - P[10][2]*SK_MY[1] - P[10][16]*SK_MY[3]);
|
|
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][17]*SH_MAG[0] + P[11][18]*SH_MAG[3] + P[11][0]*SK_MY[2] - P[11][2]*SK_MY[1] - P[11][16]*SK_MY[3]);
|
|
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][17]*SH_MAG[0] + P[12][18]*SH_MAG[3] + P[12][0]*SK_MY[2] - P[12][2]*SK_MY[1] - P[12][16]*SK_MY[3]);
|
|
Kfusion[13] = SK_MY[0]*(P[13][20] + P[13][17]*SH_MAG[0] + P[13][18]*SH_MAG[3] + P[13][0]*SK_MY[2] - P[13][2]*SK_MY[1] - P[13][16]*SK_MY[3]);
|
|
Kfusion[14] = SK_MY[0]*(P[14][20] + P[14][17]*SH_MAG[0] + P[14][18]*SH_MAG[3] + P[14][0]*SK_MY[2] - P[14][2]*SK_MY[1] - P[14][16]*SK_MY[3]);
|
|
Kfusion[15] = SK_MY[0]*(P[15][20] + P[15][17]*SH_MAG[0] + P[15][18]*SH_MAG[3] + P[15][0]*SK_MY[2] - P[15][2]*SK_MY[1] - P[15][16]*SK_MY[3]);
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MY[0]*(P[22][20] + P[22][17]*SH_MAG[0] + P[22][18]*SH_MAG[3] + P[22][0]*SK_MY[2] - P[22][2]*SK_MY[1] - P[22][16]*SK_MY[3]);
|
|
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][17]*SH_MAG[0] + P[23][18]*SH_MAG[3] + P[23][0]*SK_MY[2] - P[23][2]*SK_MY[1] - P[23][16]*SK_MY[3]);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][17]*SH_MAG[0] + P[16][18]*SH_MAG[3] + P[16][0]*SK_MY[2] - P[16][2]*SK_MY[1] - P[16][16]*SK_MY[3]);
|
|
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][17]*SH_MAG[0] + P[17][18]*SH_MAG[3] + P[17][0]*SK_MY[2] - P[17][2]*SK_MY[1] - P[17][16]*SK_MY[3]);
|
|
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][17]*SH_MAG[0] + P[18][18]*SH_MAG[3] + P[18][0]*SK_MY[2] - P[18][2]*SK_MY[1] - P[18][16]*SK_MY[3]);
|
|
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][17]*SH_MAG[0] + P[19][18]*SH_MAG[3] + P[19][0]*SK_MY[2] - P[19][2]*SK_MY[1] - P[19][16]*SK_MY[3]);
|
|
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][17]*SH_MAG[0] + P[20][18]*SH_MAG[3] + P[20][0]*SK_MY[2] - P[20][2]*SK_MY[1] - P[20][16]*SK_MY[3]);
|
|
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][17]*SH_MAG[0] + P[21][18]*SH_MAG[3] + P[21][0]*SK_MY[2] - P[21][2]*SK_MY[1] - P[21][16]*SK_MY[3]);
|
|
} else {
|
|
for (uint8_t i=16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = true;
|
|
hal.util->perf_end(_perf_test[3]);
|
|
}
|
|
else if (obsIndex == 2) // we are now fusing the Z measurement
|
|
{
|
|
hal.util->perf_begin(_perf_test[4]);
|
|
// calculate observation jacobians
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
|
|
H_MAG[0] = magN*(SH_MAG[8] - 2.0f*q1*q2) - magD*SH_MAG[3] - magE*SH_MAG[0];
|
|
H_MAG[1] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
|
|
H_MAG[16] = SH_MAG[5];
|
|
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
|
|
H_MAG[18] = SH_MAG[2];
|
|
H_MAG[21] = 1.0f;
|
|
|
|
// calculate Kalman gain
|
|
varInnovMag[2] = (P[21][21] + R_MAG + P[16][21]*SH_MAG[5] + P[18][21]*SH_MAG[2] - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[16][17]*SH_MAG[5] + P[18][17]*SH_MAG[2] - P[0][17]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][17]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3)) - P[0][21]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][21]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) + SH_MAG[5]*(P[21][16] + P[16][16]*SH_MAG[5] + P[18][16]*SH_MAG[2] - P[0][16]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][16]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3)) + SH_MAG[2]*(P[21][18] + P[16][18]*SH_MAG[5] + P[18][18]*SH_MAG[2] - P[0][18]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][18]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3)) - (magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2))*(P[21][0] + P[16][0]*SH_MAG[5] + P[18][0]*SH_MAG[2] - P[0][0]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][0]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3)) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + (magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1])*(P[21][1] + P[16][1]*SH_MAG[5] + P[18][1]*SH_MAG[2] - P[0][1]*(magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2)) + P[1][1]*(magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1]) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3)));
|
|
if (varInnovMag[2] >= R_MAG) {
|
|
SK_MZ[0] = 1.0f / varInnovMag[2];
|
|
faultStatus.bad_zmag = false;
|
|
} else {
|
|
// the calculation is badly conditioned, so we cannot perform fusion on this step
|
|
// we reset the covariance matrix and try again next measurement
|
|
CovarianceInit();
|
|
obsIndex = 3;
|
|
faultStatus.bad_zmag = true;
|
|
hal.util->perf_end(_perf_test[4]);
|
|
return;
|
|
}
|
|
SK_MZ[1] = magE*SH_MAG[0] + magD*SH_MAG[3] - magN*(SH_MAG[8] - 2.0f*q1*q2);
|
|
SK_MZ[2] = magE*SH_MAG[4] + magD*SH_MAG[7] + magN*SH_MAG[1];
|
|
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
|
|
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][18]*SH_MAG[2] + P[0][16]*SH_MAG[5] - P[0][0]*SK_MZ[1] + P[0][1]*SK_MZ[2] - P[0][17]*SK_MZ[3]);
|
|
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][18]*SH_MAG[2] + P[1][16]*SH_MAG[5] - P[1][0]*SK_MZ[1] + P[1][1]*SK_MZ[2] - P[1][17]*SK_MZ[3]);
|
|
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][18]*SH_MAG[2] + P[2][16]*SH_MAG[5] - P[2][0]*SK_MZ[1] + P[2][1]*SK_MZ[2] - P[2][17]*SK_MZ[3]);
|
|
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][18]*SH_MAG[2] + P[3][16]*SH_MAG[5] - P[3][0]*SK_MZ[1] + P[3][1]*SK_MZ[2] - P[3][17]*SK_MZ[3]);
|
|
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][18]*SH_MAG[2] + P[4][16]*SH_MAG[5] - P[4][0]*SK_MZ[1] + P[4][1]*SK_MZ[2] - P[4][17]*SK_MZ[3]);
|
|
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][18]*SH_MAG[2] + P[5][16]*SH_MAG[5] - P[5][0]*SK_MZ[1] + P[5][1]*SK_MZ[2] - P[5][17]*SK_MZ[3]);
|
|
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][18]*SH_MAG[2] + P[6][16]*SH_MAG[5] - P[6][0]*SK_MZ[1] + P[6][1]*SK_MZ[2] - P[6][17]*SK_MZ[3]);
|
|
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][18]*SH_MAG[2] + P[7][16]*SH_MAG[5] - P[7][0]*SK_MZ[1] + P[7][1]*SK_MZ[2] - P[7][17]*SK_MZ[3]);
|
|
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][18]*SH_MAG[2] + P[8][16]*SH_MAG[5] - P[8][0]*SK_MZ[1] + P[8][1]*SK_MZ[2] - P[8][17]*SK_MZ[3]);
|
|
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][18]*SH_MAG[2] + P[9][16]*SH_MAG[5] - P[9][0]*SK_MZ[1] + P[9][1]*SK_MZ[2] - P[9][17]*SK_MZ[3]);
|
|
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][18]*SH_MAG[2] + P[10][16]*SH_MAG[5] - P[10][0]*SK_MZ[1] + P[10][1]*SK_MZ[2] - P[10][17]*SK_MZ[3]);
|
|
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][18]*SH_MAG[2] + P[11][16]*SH_MAG[5] - P[11][0]*SK_MZ[1] + P[11][1]*SK_MZ[2] - P[11][17]*SK_MZ[3]);
|
|
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][18]*SH_MAG[2] + P[12][16]*SH_MAG[5] - P[12][0]*SK_MZ[1] + P[12][1]*SK_MZ[2] - P[12][17]*SK_MZ[3]);
|
|
Kfusion[13] = SK_MZ[0]*(P[13][21] + P[13][18]*SH_MAG[2] + P[13][16]*SH_MAG[5] - P[13][0]*SK_MZ[1] + P[13][1]*SK_MZ[2] - P[13][17]*SK_MZ[3]);
|
|
Kfusion[14] = SK_MZ[0]*(P[14][21] + P[14][18]*SH_MAG[2] + P[14][16]*SH_MAG[5] - P[14][0]*SK_MZ[1] + P[14][1]*SK_MZ[2] - P[14][17]*SK_MZ[3]);
|
|
Kfusion[15] = SK_MZ[0]*(P[15][21] + P[15][18]*SH_MAG[2] + P[15][16]*SH_MAG[5] - P[15][0]*SK_MZ[1] + P[15][1]*SK_MZ[2] - P[15][17]*SK_MZ[3]);
|
|
// zero Kalman gains to inhibit wind state estimation
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = SK_MZ[0]*(P[22][21] + P[22][18]*SH_MAG[2] + P[22][16]*SH_MAG[5] - P[22][0]*SK_MZ[1] + P[22][1]*SK_MZ[2] - P[22][17]*SK_MZ[3]);
|
|
Kfusion[23] = SK_MZ[0]*(P[23][21] + P[23][18]*SH_MAG[2] + P[23][16]*SH_MAG[5] - P[23][0]*SK_MZ[1] + P[23][1]*SK_MZ[2] - P[23][17]*SK_MZ[3]);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
// zero Kalman gains to inhibit magnetic field state estimation
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][18]*SH_MAG[2] + P[16][16]*SH_MAG[5] - P[16][0]*SK_MZ[1] + P[16][1]*SK_MZ[2] - P[16][17]*SK_MZ[3]);
|
|
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][18]*SH_MAG[2] + P[17][16]*SH_MAG[5] - P[17][0]*SK_MZ[1] + P[17][1]*SK_MZ[2] - P[17][17]*SK_MZ[3]);
|
|
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][18]*SH_MAG[2] + P[18][16]*SH_MAG[5] - P[18][0]*SK_MZ[1] + P[18][1]*SK_MZ[2] - P[18][17]*SK_MZ[3]);
|
|
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][18]*SH_MAG[2] + P[19][16]*SH_MAG[5] - P[19][0]*SK_MZ[1] + P[19][1]*SK_MZ[2] - P[19][17]*SK_MZ[3]);
|
|
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][18]*SH_MAG[2] + P[20][16]*SH_MAG[5] - P[20][0]*SK_MZ[1] + P[20][1]*SK_MZ[2] - P[20][17]*SK_MZ[3]);
|
|
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][18]*SH_MAG[2] + P[21][16]*SH_MAG[5] - P[21][0]*SK_MZ[1] + P[21][1]*SK_MZ[2] - P[21][17]*SK_MZ[3]);
|
|
} else {
|
|
for (uint8_t i=16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// set flags to indicate to other processes that fusion has been performede and is required on the next frame
|
|
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
|
|
magFusePerformed = true;
|
|
magFuseRequired = false;
|
|
hal.util->perf_end(_perf_test[4]);
|
|
}
|
|
|
|
hal.util->perf_begin(_perf_test[5]);
|
|
// calculate the measurement innovation
|
|
innovMag[obsIndex] = MagPred[obsIndex] - magDataDelayed.mag[obsIndex];
|
|
// calculate the innovation test ratio
|
|
magTestRatio[obsIndex] = sq(innovMag[obsIndex]) / (sq(frontend._magInnovGate) * varInnovMag[obsIndex]);
|
|
// check the last values from all components and set magnetometer health accordingly
|
|
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
|
|
// Don't fuse unless all componenets pass. The exception is if the bad health has timed out and we are not a fly forward vehicle
|
|
// In this case we might as well try using the magnetometer, but with a reduced weighting
|
|
if (magHealth || ((magTestRatio[obsIndex] < 1.0f) && !assume_zero_sideslip() && magTimeout)) {
|
|
|
|
hal.util->perf_begin(_perf_test[8]);
|
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
|
stateStruct.angErr.zero();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
// If we are forced to use a bad compass in flight, we reduce the weighting by a factor of 4
|
|
if (!magHealth && (PV_AidingMode == AID_ABSOLUTE)) {
|
|
Kfusion[j] *= 0.25f;
|
|
}
|
|
// If in the air and there is no other form of heading reference or we are yawing rapidly which creates larger inertial yaw errors,
|
|
// we strengthen the magnetometer attitude correction
|
|
if (motorsArmed && ((PV_AidingMode == AID_NONE) || highYawRate) && j <= 3) {
|
|
Kfusion[j] *= 4.0f;
|
|
}
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovMag[obsIndex];
|
|
}
|
|
|
|
// Inhibit corrections to tilt if requested. This enables mag states to settle after a reset without causing sudden changes in roll and pitch
|
|
if (magFuseTiltInhibit) {
|
|
stateStruct.angErr.x = 0.0f;
|
|
stateStruct.angErr.y = 0.0f;
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=2; j++) {
|
|
KH[i][j] = Kfusion[i] * H_MAG[j];
|
|
}
|
|
for (unsigned j = 3; j<=15; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
for (unsigned j = 16; j<=21; j++) {
|
|
KH[i][j] = Kfusion[i] * H_MAG[j];
|
|
}
|
|
for (unsigned j = 22; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
hal.util->perf_end(_perf_test[8]);
|
|
hal.util->perf_begin(_perf_test[9]);
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * P[0][j];
|
|
res += KH[i][1] * P[1][j];
|
|
res += KH[i][2] * P[2][j];
|
|
res += KH[i][16] * P[16][j];
|
|
res += KH[i][17] * P[17][j];
|
|
res += KH[i][18] * P[18][j];
|
|
res += KH[i][19] * P[19][j];
|
|
res += KH[i][20] * P[20][j];
|
|
res += KH[i][21] * P[21][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
hal.util->perf_end(_perf_test[9]);
|
|
}
|
|
|
|
hal.util->perf_end(_perf_test[5]);
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
|
// ill-condiioning.
|
|
hal.util->perf_begin(_perf_test[6]);
|
|
ForceSymmetry();
|
|
hal.util->perf_end(_perf_test[6]);
|
|
hal.util->perf_begin(_perf_test[7]);
|
|
ConstrainVariances();
|
|
hal.util->perf_end(_perf_test[7]);
|
|
}
|
|
|
|
|
|
/*
|
|
* Fuse compass measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
* This fusion method only modifies the orientation, does not require use of the magnetic field states and is computatonally cheaper.
|
|
* It is suitable for use when the external magnetic field environment is disturbed (eg close to metal structures, on ground).
|
|
* It is not as robust to magneometer failures.
|
|
*/
|
|
void NavEKF2_core::fuseCompass()
|
|
{
|
|
float q0 = stateStruct.quat[0];
|
|
float q1 = stateStruct.quat[1];
|
|
float q2 = stateStruct.quat[2];
|
|
float q3 = stateStruct.quat[3];
|
|
|
|
float magX = magDataDelayed.mag.x;
|
|
float magY = magDataDelayed.mag.y;
|
|
float magZ = magDataDelayed.mag.z;
|
|
|
|
// compass measurement error variance (rad^2)
|
|
const float R_MAG = 3e-2f;
|
|
|
|
// Calculate observation Jacobian
|
|
float t2 = q0*q0;
|
|
float t3 = q1*q1;
|
|
float t4 = q2*q2;
|
|
float t5 = q3*q3;
|
|
float t6 = q0*q2*2.0f;
|
|
float t7 = q1*q3*2.0f;
|
|
float t8 = t6+t7;
|
|
float t9 = q0*q3*2.0f;
|
|
float t13 = q1*q2*2.0f;
|
|
float t10 = t9-t13;
|
|
float t11 = t2+t3-t4-t5;
|
|
float t12 = magX*t11;
|
|
float t14 = magZ*t8;
|
|
float t19 = magY*t10;
|
|
float t15 = t12+t14-t19;
|
|
float t16 = t2-t3+t4-t5;
|
|
float t17 = q0*q1*2.0f;
|
|
float t24 = q2*q3*2.0f;
|
|
float t18 = t17-t24;
|
|
float t20 = 1.0f/t15;
|
|
float t21 = magY*t16;
|
|
float t22 = t9+t13;
|
|
float t23 = magX*t22;
|
|
float t28 = magZ*t18;
|
|
float t25 = t21+t23-t28;
|
|
float t29 = t20*t25;
|
|
float t26 = tan(t29);
|
|
float t27 = 1.0f/(t15*t15);
|
|
float t30 = t26*t26;
|
|
float t31 = t30+1.0f;
|
|
float H_MAG[3];
|
|
H_MAG[0] = -t31*(t20*(magZ*t16+magY*t18)+t25*t27*(magY*t8+magZ*t10));
|
|
H_MAG[1] = t31*(t20*(magX*t18+magZ*t22)+t25*t27*(magX*t8-magZ*t11));
|
|
H_MAG[2] = t31*(t20*(magX*t16-magY*t22)+t25*t27*(magX*t10+magY*t11));
|
|
|
|
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 3 elements in H are non zero
|
|
float PH[3];
|
|
float varInnov = R_MAG;
|
|
for (uint8_t rowIndex=0; rowIndex<=2; rowIndex++) {
|
|
PH[rowIndex] = 0.0f;
|
|
for (uint8_t colIndex=0; colIndex<=2; colIndex++) {
|
|
PH[rowIndex] += P[rowIndex][colIndex]*H_MAG[colIndex];
|
|
}
|
|
varInnov += H_MAG[rowIndex]*PH[rowIndex];
|
|
}
|
|
float varInnovInv = 1.0f / varInnov;
|
|
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
|
|
Kfusion[rowIndex] = 0.0f;
|
|
for (uint8_t colIndex=0; colIndex<=2; colIndex++) {
|
|
Kfusion[rowIndex] += P[rowIndex][colIndex]*H_MAG[colIndex];
|
|
}
|
|
Kfusion[rowIndex] *= varInnovInv;
|
|
}
|
|
|
|
// Calculate the innovation
|
|
float innovation = calcMagHeadingInnov();
|
|
|
|
// Copy raw value to output variable used for data logging
|
|
innovYaw = innovation;
|
|
|
|
// limit the innovation so that initial corrections are not too large
|
|
if (innovation > 0.5f) {
|
|
innovation = 0.5f;
|
|
} else if (innovation < -0.5f) {
|
|
innovation = -0.5f;
|
|
}
|
|
|
|
// correct the state vector
|
|
stateStruct.angErr.zero();
|
|
for (uint8_t i=0; i<=stateIndexLim; i++) {
|
|
statesArray[i] -= Kfusion[i] * innovation;
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
|
|
float HP[24];
|
|
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) {
|
|
HP[colIndex] = 0.0f;
|
|
for (uint8_t rowIndex=0; rowIndex<=2; rowIndex++) {
|
|
HP[colIndex] += H_MAG[rowIndex]*P[rowIndex][colIndex];
|
|
}
|
|
}
|
|
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
|
|
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++) {
|
|
P[rowIndex][colIndex] -= Kfusion[rowIndex] * HP[colIndex];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
|
// ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
}
|
|
|
|
/*
|
|
* Fuse declination angle using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
* This is used to prevent the declination of the EKF earth field states from drifting during operation without GPS
|
|
* or some other absolute position or velocity reference
|
|
*/
|
|
void NavEKF2_core::FuseDeclination()
|
|
{
|
|
// declination error variance (rad^2)
|
|
const float R_DECL = 1e-2f;
|
|
|
|
// copy required states to local variables
|
|
float magN = stateStruct.earth_magfield.x;
|
|
float magE = stateStruct.earth_magfield.y;
|
|
|
|
// prevent bad earth field states from causing numerical errors or exceptions
|
|
if (magN < 1e-3f) {
|
|
return;
|
|
}
|
|
|
|
// Calculate observation Jacobian and Kalman gains
|
|
float t2 = 1.0f/magN;
|
|
float t4 = magE*t2;
|
|
float t3 = tanf(t4);
|
|
float t5 = t3*t3;
|
|
float t6 = t5+1.0f;
|
|
float t7 = 1.0f/(magN*magN);
|
|
float t8 = P[17][17]*t2*t6;
|
|
float t15 = P[16][17]*magE*t6*t7;
|
|
float t9 = t8-t15;
|
|
float t10 = t2*t6*t9;
|
|
float t11 = P[17][16]*t2*t6;
|
|
float t16 = P[16][16]*magE*t6*t7;
|
|
float t12 = t11-t16;
|
|
float t17 = magE*t6*t7*t12;
|
|
float t13 = R_DECL+t10-t17;
|
|
float t14 = 1.0f/t13;
|
|
float t18 = magE;
|
|
float t19 = magN;
|
|
float t21 = 1.0f/t19;
|
|
float t22 = t18*t21;
|
|
float t20 = tanf(t22);
|
|
float t23 = t20*t20;
|
|
float t24 = t23+1.0f;
|
|
|
|
float H_MAG[24];
|
|
H_MAG[16] = -t18*1.0f/(t19*t19)*t24;
|
|
H_MAG[17] = t21*t24;
|
|
|
|
for (uint8_t i=0; i<=15; i++) {
|
|
Kfusion[i] = t14*(P[i][17]*t2*t6-P[i][16]*magE*t6*t7);
|
|
}
|
|
Kfusion[16] = -t14*(t16-P[16][17]*t2*t6);
|
|
Kfusion[17] = t14*(t8-P[17][16]*magE*t6*t7);
|
|
for (uint8_t i=17; i<=23; i++) {
|
|
Kfusion[i] = t14*(P[i][17]*t2*t6-P[i][16]*magE*t6*t7);
|
|
}
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// Calculate the innovation
|
|
float innovation = atanf(t4) - magDecAng;
|
|
|
|
// limit the innovation to protect against data errors
|
|
if (innovation > 0.5f) {
|
|
innovation = 0.5f;
|
|
} else if (innovation < -0.5f) {
|
|
innovation = -0.5f;
|
|
}
|
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
|
stateStruct.angErr.zero();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovation;
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=15; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
KH[i][16] = Kfusion[i] * H_MAG[16];
|
|
KH[i][17] = Kfusion[i] * H_MAG[17];
|
|
for (unsigned j = 18; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
KHP[i][j] = KH[i][16] * P[16][j] + KH[i][17] * P[17][j];
|
|
}
|
|
}
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent
|
|
// ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
}
|
|
|
|
// Calculate magnetic heading innovation
|
|
float NavEKF2_core::calcMagHeadingInnov()
|
|
{
|
|
// rotate predicted earth components into body axes and calculate
|
|
// predicted measurements
|
|
Matrix3f Tbn_temp;
|
|
stateStruct.quat.rotation_matrix(Tbn_temp);
|
|
Vector3f magMeasNED = Tbn_temp*magDataDelayed.mag;
|
|
|
|
// calculate the innovation where the predicted measurement is the angle wrt magnetic north of the horizontal component of the measured field
|
|
float innovation = atan2f(magMeasNED.y,magMeasNED.x) - _ahrs->get_compass()->get_declination();
|
|
|
|
// wrap the innovation so it sits on the range from +-pi
|
|
if (innovation > M_PI_F) {
|
|
innovation = innovation - 2*M_PI_F;
|
|
} else if (innovation < -M_PI_F) {
|
|
innovation = innovation + 2*M_PI_F;
|
|
}
|
|
|
|
// Unwrap so that a large yaw gyro bias offset that causes the heading to wrap does not lead to continual uncontrolled heading drift
|
|
if (innovation - lastInnovation > M_PI_F) {
|
|
// Angle has wrapped in the positive direction to subtract an additional 2*Pi
|
|
innovationIncrement -= 2*M_PI_F;
|
|
} else if (innovation -innovationIncrement < -M_PI_F) {
|
|
// Angle has wrapped in the negative direction so add an additional 2*Pi
|
|
innovationIncrement += 2*M_PI_F;
|
|
}
|
|
lastInnovation = innovation;
|
|
|
|
return innovation + innovationIncrement;
|
|
}
|
|
|
|
/********************************************************
|
|
* MISC FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// align the NE earth magnetic field states with the published declination
|
|
void NavEKF2_core::alignMagStateDeclination()
|
|
{
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// rotate the NE values so that the declination matches the published value
|
|
Vector3f initMagNED = stateStruct.earth_magfield;
|
|
float magLengthNE = pythagorous2(initMagNED.x,initMagNED.y);
|
|
stateStruct.earth_magfield.x = magLengthNE * cosf(magDecAng);
|
|
stateStruct.earth_magfield.y = magLengthNE * sinf(magDecAng);
|
|
}
|
|
|
|
|
|
#endif // HAL_CPU_CLASS
|