ardupilot/libraries/AP_HAL_ChibiOS/RCOutput.cpp
2018-02-07 20:33:45 +11:00

497 lines
14 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include "RCOutput.h"
#include <AP_Math/AP_Math.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
#if HAL_WITH_IO_MCU
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
struct RCOutput::pwm_group RCOutput::pwm_group_list[] = { HAL_PWM_GROUPS };
#define NUM_GROUPS ARRAY_SIZE_SIMPLE(pwm_group_list)
#define CHAN_DISABLED 255
void RCOutput::init()
{
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
//Start Pwm groups
pwmStart(pwm_group_list[i].pwm_drv, &pwm_group_list[i].pwm_cfg);
for (uint8_t j = 0; j < 4; j++ ) {
if (pwm_group_list[i].chan[j] != CHAN_DISABLED) {
total_channels = MAX(total_channels, pwm_group_list[i].chan[j]+1);
}
}
}
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.init();
// with IOMCU the local channels start at 8
chan_offset = 8;
total_channels += chan_offset;
}
#endif
chMtxObjectInit(&trigger_mutex);
}
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
//check if the request spans accross any of the channel groups
uint8_t update_mask = 0;
// greater than 400 doesn't give enough room at higher periods for
// the down pulse
if (freq_hz > 400 && _output_mode != MODE_PWM_BRUSHED) {
freq_hz = 400;
}
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.set_freq(chmask, freq_hz);
}
#endif
chmask >>= chan_offset;
if (chmask == 0) {
return;
}
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
uint16_t grp_ch_mask = 0;
for (uint8_t j=0; j<4; j++) {
if (pwm_group_list[i].chan[j] != CHAN_DISABLED) {
grp_ch_mask |= (1U<<pwm_group_list[i].chan[j]);
}
}
if ((grp_ch_mask & chmask) != 0) {
/*
we enable the new frequency on all groups that have one
of the requested channels. This means we may enable high
speed on some channels that aren't requested, but that
is needed in order to fly a vehicle such a a hex
multicopter properly
*/
update_mask |= grp_ch_mask;
uint16_t freq_set = freq_hz;
uint32_t old_clock = pwm_group_list[i].pwm_cfg.frequency;
if (freq_set > 400 && pwm_group_list[i].pwm_cfg.frequency == 1000000) {
// need to change to an 8MHz clock
pwm_group_list[i].pwm_cfg.frequency = 8000000;
} else if (freq_set <= 400 && pwm_group_list[i].pwm_cfg.frequency == 8000000) {
// need to change to an 1MHz clock
pwm_group_list[i].pwm_cfg.frequency = 1000000;
}
// check if the frequency is possible, and keep halving
// down to 1MHz until it is OK with the hardware timer we
// are using. If we don't do this we'll hit an assert in
// the ChibiOS PWM driver on some timers
PWMDriver *pwmp = pwm_group_list[i].pwm_drv;
uint32_t psc = (pwmp->clock / pwmp->config->frequency) - 1;
while ((psc > 0xFFFF || ((psc + 1) * pwmp->config->frequency) != pwmp->clock) &&
pwm_group_list[i].pwm_cfg.frequency > 1000000) {
pwm_group_list[i].pwm_cfg.frequency /= 2;
psc = (pwmp->clock / pwmp->config->frequency) - 1;
}
if (old_clock != pwm_group_list[i].pwm_cfg.frequency) {
// we need to stop and start to setup the new clock
pwmStop(pwm_group_list[i].pwm_drv);
pwmStart(pwm_group_list[i].pwm_drv, &pwm_group_list[i].pwm_cfg);
}
pwmChangePeriod(pwm_group_list[i].pwm_drv,
pwm_group_list[i].pwm_cfg.frequency/freq_set);
}
}
if (freq_hz > 50) {
fast_channel_mask |= update_mask;
}
if (chmask != update_mask) {
hal.console->printf("RCOutput: Failed to set PWM frequency req %x set %x\n", (unsigned)chmask, (unsigned)update_mask);
}
}
/*
set default output rate
*/
void RCOutput::set_default_rate(uint16_t freq_hz)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.set_default_rate(freq_hz);
}
#endif
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
uint16_t grp_ch_mask = 0;
for (uint8_t j=0; j<4; j++) {
if (pwm_group_list[i].chan[j] != CHAN_DISABLED) {
grp_ch_mask |= (1U<<pwm_group_list[i].chan[j]);
}
}
if (grp_ch_mask & fast_channel_mask) {
// don't change fast channels
continue;
}
pwmChangePeriod(pwm_group_list[i].pwm_drv,
pwm_group_list[i].pwm_cfg.frequency/freq_hz);
}
}
uint16_t RCOutput::get_freq(uint8_t chan)
{
if (chan >= total_channels) {
return 0;
}
#if HAL_WITH_IO_MCU
if (chan < chan_offset) {
return iomcu.get_freq(chan);
}
#endif
chan -= chan_offset;
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
for (uint8_t j = 0; j < 4; j++) {
if (pwm_group_list[i].chan[j] == chan) {
return pwm_group_list[i].pwm_drv->config->frequency / pwm_group_list[i].pwm_drv->period;
}
}
}
// assume 50Hz default
return 50;
}
void RCOutput::enable_ch(uint8_t chan)
{
if (chan >= total_channels) {
return;
}
if (chan < chan_offset) {
return;
}
chan -= chan_offset;
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
for (uint8_t j = 0; j < 4; j++) {
if ((pwm_group_list[i].chan[j] == chan) && !(en_mask & 1<<chan)) {
en_mask |= 1<<chan;
}
}
}
}
void RCOutput::disable_ch(uint8_t chan)
{
if (chan >= total_channels) {
return;
}
if (chan < chan_offset) {
return;
}
chan -= chan_offset;
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
for (uint8_t j = 0; j < 4; j++) {
if (pwm_group_list[i].chan[j] == chan) {
pwmDisableChannel(pwm_group_list[i].pwm_drv, j);
en_mask &= ~(1<<chan);
}
}
}
}
void RCOutput::write(uint8_t chan, uint16_t period_us)
{
if (chan >= total_channels) {
return;
}
last_sent[chan] = period_us;
#if HAL_WITH_IO_MCU
// handle IO MCU channels
if (AP_BoardConfig::io_enabled()) {
iomcu.write_channel(chan, period_us);
}
#endif
if (chan < chan_offset) {
return;
}
chan -= chan_offset;
period[chan] = period_us;
num_channels = MAX(chan+1, num_channels);
if (!corked) {
push_local();
}
}
/*
push values to local channels from period[] array
*/
void RCOutput::push_local(void)
{
if (num_channels == 0) {
return;
}
uint16_t outmask = (1U<<num_channels)-1;
outmask &= en_mask;
uint16_t widest_pulse = 0;
uint8_t need_trigger = 0;
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
for (uint8_t j = 0; j < 4; j++) {
uint8_t chan = pwm_group_list[i].chan[j];
if (chan == CHAN_DISABLED) {
continue;
}
if (outmask & (1UL<<chan)) {
uint32_t period_us = period[chan];
if(_output_mode == MODE_PWM_BRUSHED && (fast_channel_mask & (1UL<<chan))) {
// note that we only use brushed signals on fast
// channels. This allows for ordinary PWM on
// servos attached to a brushed vehicle
if (period_us <= _esc_pwm_min) {
period_us = 0;
} else if (period_us >= _esc_pwm_max) {
period_us = PWM_FRACTION_TO_WIDTH(pwm_group_list[i].pwm_drv, 1, 1);
} else {
period_us = PWM_FRACTION_TO_WIDTH(pwm_group_list[i].pwm_drv,\
(_esc_pwm_max - _esc_pwm_min), (period_us - _esc_pwm_min));
}
pwmEnableChannel(pwm_group_list[i].pwm_drv, j, period_us);
} else {
uint32_t width = (pwm_group_list[i].pwm_cfg.frequency/1000000) * period_us;
pwmEnableChannel(pwm_group_list[i].pwm_drv, j, width);
}
if (period_us > widest_pulse) {
widest_pulse = period_us;
}
need_trigger |= (1U<<i);
}
}
}
if (widest_pulse > 2300) {
widest_pulse = 2300;
}
trigger_widest_pulse = widest_pulse;
trigger_groups = need_trigger;
if (trigger_groups && _output_mode == MODE_PWM_ONESHOT) {
trigger_oneshot();
}
}
uint16_t RCOutput::read(uint8_t chan)
{
if (chan >= total_channels) {
return 0;
}
#if HAL_WITH_IO_MCU
if (chan < chan_offset) {
return iomcu.read_channel(chan);
}
#endif
chan -= chan_offset;
return period[chan];
}
void RCOutput::read(uint16_t* period_us, uint8_t len)
{
if (len > total_channels) {
len = total_channels;
}
#if HAL_WITH_IO_MCU
for (uint8_t i=0; i<MIN(len, chan_offset); i++) {
period_us[i] = iomcu.read_channel(i);
}
#endif
if (len <= chan_offset) {
return;
}
len -= chan_offset;
period_us += chan_offset;
memcpy(period_us, period, len*sizeof(uint16_t));
}
uint16_t RCOutput::read_last_sent(uint8_t chan)
{
if (chan >= total_channels) {
return 0;
}
return last_sent[chan];
}
void RCOutput::read_last_sent(uint16_t* period_us, uint8_t len)
{
if (len > total_channels) {
len = total_channels;
}
for (uint8_t i=0; i<len; i++) {
period_us[i] = read_last_sent(i);
}
}
/*
setup output mode
*/
void RCOutput::set_output_mode(enum output_mode mode)
{
_output_mode = mode;
if (_output_mode == MODE_PWM_BRUSHED) {
// force zero output initially
for (uint8_t i=chan_offset; i<chan_offset+num_channels; i++) {
write(i, 0);
}
}
if (_output_mode == MODE_PWM_ONESHOT) {
// for oneshot we force 1Hz output and then trigger on each loop
for (uint8_t i=0; i< NUM_GROUPS; i++) {
pwmChangePeriod(pwm_group_list[i].pwm_drv, pwm_group_list[i].pwm_cfg.frequency);
}
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
return iomcu.set_oneshot_mode();
}
#endif
}
}
/*
force the safety switch on, disabling PWM output from the IO board
*/
bool RCOutput::force_safety_on(void)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
return iomcu.force_safety_on();
}
#endif
return false;
}
/*
force the safety switch off, enabling PWM output from the IO board
*/
void RCOutput::force_safety_off(void)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.force_safety_off();
}
#endif
}
/*
start corking output
*/
void RCOutput::cork(void)
{
corked = true;
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.cork();
}
#endif
}
/*
stop corking output
*/
void RCOutput::push(void)
{
corked = false;
push_local();
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.push();
}
#endif
}
/*
enable sbus output
*/
bool RCOutput::enable_px4io_sbus_out(uint16_t rate_hz)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
return iomcu.enable_sbus_out(rate_hz);
}
#endif
return false;
}
/*
trigger output groups for oneshot mode
*/
void RCOutput::trigger_oneshot(void)
{
if (!chMtxTryLock(&trigger_mutex)) {
return;
}
uint64_t now = AP_HAL::micros64();
if (now < min_pulse_trigger_us) {
// guarantee minimum pulse separation
hal.scheduler->delay_microseconds(min_pulse_trigger_us - now);
}
osalSysLock();
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) {
if (trigger_groups & (1U<<i)) {
// this triggers pulse output for a channel group
pwm_group_list[i].pwm_drv->tim->EGR = STM32_TIM_EGR_UG;
}
}
osalSysUnlock();
/*
calculate time that we are allowed to trigger next pulse
to guarantee at least a 50us gap between pulses
*/
min_pulse_trigger_us = AP_HAL::micros64() + trigger_widest_pulse + 50;
chMtxUnlock(&trigger_mutex);
}
/*
periodic timer. The only need for a periodic timer is in oneshot
mode where we want to sustain a minimum output rate for when the
main loop is busy doing something like gyro calibration
A mininum output rate helps with some oneshot ESCs
*/
void RCOutput::timer_tick(void)
{
if (_output_mode != MODE_PWM_ONESHOT ||
trigger_groups == 0 ||
min_pulse_trigger_us == 0) {
return;
}
uint64_t now = AP_HAL::micros64();
if (now - min_pulse_trigger_us > 10000) {
// trigger at a minimum of 100Hz
trigger_oneshot();
}
}