ardupilot/libraries/AP_RCProtocol/AP_RCProtocol_UDP.cpp

181 lines
4.0 KiB
C++

#include "AP_RCProtocol_config.h"
#if AP_RCPROTOCOL_UDP_ENABLED
#include "AP_RCProtocol_UDP.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include <SITL/SITL.h>
#if AP_RCPROTOCOL_FDM_ENABLED
#include "AP_RCProtocol_FDM.h"
#endif
extern const AP_HAL::HAL& hal;
void AP_RCProtocol_UDP::set_default_pwm_input_values()
{
pwm_input[0] = 1500;
pwm_input[1] = 1500;
pwm_input[2] = 1000;
pwm_input[3] = 1500;
pwm_input[4] = 1800;
pwm_input[5] = 1000;
pwm_input[6] = 1000;
pwm_input[7] = 1800;
#if APM_BUILD_TYPE(APM_BUILD_Rover)
// set correct default throttle for rover (allowing for reverse)
pwm_input[2] = 1500;
#elif APM_BUILD_TYPE(APM_BUILD_ArduSub) || APM_BUILD_TYPE(APM_BUILD_Blimp)
for(uint8_t i = 0; i < 8; i++) {
pwm_input[i] = 1500;
}
#endif
num_channels = 8;
}
bool AP_RCProtocol_UDP::init()
{
const auto sitl = AP::sitl();
if (sitl == nullptr) {
return false;
}
if (!rc_in.reuseaddress()) {
return false;
}
if (!rc_in.bind("0.0.0.0", sitl->rcin_port)) {
return false;
}
if (!rc_in.set_blocking(false)) {
return false;
}
if (!rc_in.set_cloexec()) {
return false;
}
set_default_pwm_input_values();
return true;
}
void AP_RCProtocol_UDP::update()
{
#if AP_RCPROTOCOL_FDM_ENABLED
// yield to the FDM backend if it is getting data
if (fdm_backend->active()) {
return;
}
#endif
if (!init_done) {
if (!init()) {
return;
}
init_done = true;
}
read_all_socket_input();
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
const auto sitl = AP::sitl();
if (sitl == nullptr) {
return;
}
if (sitl->rc_fail == SITL::SIM::SITL_RCFail_NoPulses) {
return;
}
#endif
// simulate RC input at 50Hz
if (AP_HAL::millis() - last_input_ms < 20) {
return;
}
last_input_ms = AP_HAL::millis();
add_input(
num_channels,
pwm_input,
false, // failsafe
0, // check me
0 // link quality
);
}
/*
check for a SITL RC input packet
*/
void AP_RCProtocol_UDP::read_all_socket_input(void)
{
struct pwm_packet {
uint16_t pwm[16];
} pwm_pkt;
uint8_t pwm_pkt_num_channels = 0;
ssize_t receive_size = 1; // lies!
uint16_t count = 0;
while (receive_size > 0) {
receive_size = rc_in.recv(&pwm_pkt, sizeof(pwm_pkt), 0);
switch (receive_size) {
case -1:
break;
case 8*2:
case 16*2:
pwm_pkt_num_channels = receive_size/2;
break;
default:
fprintf(stderr, "Malformed SITL RC input (%ld)", (long)receive_size);
return;
}
count++;
}
if (count > 100) {
::fprintf(stderr, "Read %u rc inputs\n", count);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
const auto sitl = AP::sitl();
if (sitl == nullptr) {
return;
}
// convert last packet received into pwm values
switch (sitl->rc_fail) {
case SITL::SIM::SITL_RCFail_Throttle950:
// discard anything we just read from the "receiver" and set
// values to bind values:
for (uint8_t i=0; i<ARRAY_SIZE(pwm_input); i++) {
pwm_input[i] = 1500; // centre all inputs
}
pwm_input[2] = 950; // reset throttle (assumed to be on channel 3...)
return;
case SITL::SIM::SITL_RCFail_NoPulses:
// see also code in ::update
return;
case SITL::SIM::SITL_RCFail_None:
break;
}
#endif
if (pwm_pkt_num_channels == 0) {
return;
}
for (uint8_t i=0; i<pwm_pkt_num_channels; i++) {
// setup the pwm input for the RC channel inputs
const uint16_t pwm = pwm_pkt.pwm[i];
if (pwm == 0) {
// 0 means "ignore this value"
continue;
}
pwm_input[i] = pwm;
}
num_channels = pwm_pkt_num_channels; // or ARRAY_SIZE(pwm_input)?
}
#endif // AP_RCPROTOCOL_UDP_ENABLED